Comprehensive Rust £

Martin Geisler

Contents

Welcome to Comprehensive Rust £k

1

Running the Course

1.1 Course Structure i e e e e e e e e e e e e e e e
1.2 Keyboard Shortcuts L
1.3 Translations e e e e e e

Using Cargo

2.1 TheRustEcosystem i
2.2 Code Samplesin This Training
2.3 Running Code LocallywithCargo

Day 1: Morning
Welcome to Day 1

Hello, World

41 WhatisRust? e e e e e
4.2 Benefitsof Rust e e e
4.3 Playgroundol e e e e e

Types and Values
5.1 Hello, World e e e e e
5.2 Variables e e e e e e e e e e
5.3 Values e e e e e e e e e e e
5.4 Arithmetic e e e e e e e e e
55 Typelnference e
5.6 Exercise: Fibonacci. e
5.6.1 Solution e

Control Flow Basics

6.1 BlocksandScopes e e

6.2 ifexpressionso

6.3 matchEXpressions i i e e e

6.4 LOOPS e e e e e
6.41 for e
6.4.2 100p e e e e e e

6.5 breakandcontinue. Lo

12

14
15
19
19

21
21
22
23

6.5.1 Labels e e
6.6 FUunctions e e e e e e e e e
6.7 MaACIOS ot o e e e e e e e e e e e e e e e e e e
6.8 Exercise: CollatzSequence Lo

6.8.1 Solution e e

II Day 1: Afternoon
7 Welcome Back

8 Tuples and Arrays
8.1 AITAYS o e e e e e e e e e e e e e e e e
8.2 Tuples. e e e e e e
8.3 Arraylteration
8.4 Patterns and Destructuring oo
8.5 Exercise: Nested Arrays o v it it e e e
851 Solution e

9 References

9.1 Shared References 0 i i i e e e e e
9.2 Exclusive References i i e e e e e e e
9.3 SLCES i e e e e e e e e e e e
9.4 Strings e e e e
9.5 Reference Validity
9.6 Exercise: GEOMELTY it e e e e e

9.6.1 Solution e e e e

10 User-Defined Types

10.1 Named Structs o e e e e e e e e e e
10.2 Tuple Structs o e e e e e e e e e e e
103 ENUMS e e e e e e e e e e e e e e e e e
10.4 Type AlIases o i e e e e e e e
105 const L e e e e e e e e e e e e
10.6 static e e e e e e
10.7 Exercise: Elevator Events e e

10.7.1 Solution e e e e e e e e e e e

IIT Day 2: Morning
11 Welcome to Day 2

12 Pattern Matching
12.1 Irrefutable Patterns e e e
12.2 Matching Values e
12.3 SIructs e e e e e e e e e e e e e e e e e e e
124 ENUMS o o e
12.5 LetControl Flow e e e e
12.5.1 if 1et EXPressions v v v v vttt e e
12.5.2 while let Statements e
12.5.3 let elseStatements e e e e

44
45

46
46
47
48
48
49
50

51
51
52
33
33
54
55
56

57
57
38
39
61
62
62
63
64

12.6 Exercise: Expression Evaluation
12.6.1 Solution

13 Methods and Traits
13.1 Methods L
13.2Traits o e e e
13.2.1 Implementing Traits o oo
13.2.2 Supertraits
13.2.3 Associated Typeso
133 Deriving L e e e e e
13.4 Exercise: Logger Trait i e
13.4.1 Solution e e e e

14 Generics

14.1 Generic Functions e e e e e e e
14.2 Trait Bounds o e e e e e e e e
14.3 GenericData Types o o v v i i e e e
14.4 GenericTraits e e e e e e e
14.5 impl Trait L e
14.6 dyn Trait e
14.7 Exercise: GENEriCmMin o v v i e e e e e e e e e e e e e

14.7.1 Solution e e e e

IV Day 2: Afternoon
15 Welcome Back

16 Closures
16.1 Closure Syntax o . . e e e e e
16.2 Capturing e e e e e e e e e e e
16.3 Closuretraits e e
16.4 Exercise: Log Filter
16.4.1 Solution

17 Standard Library Types

17.1 Standard Library
17.2 Documentation e e e e e e e e e
17.30ption oL e e
174 Result e e e e e e e e e e e e
175 StPING o e e e e e e e e e e e e
17.6 Vel . . . o o e e e e e e e e e e e e e e
17.7 HashMap e
17.8 Exercise: COUNET v v v e i e e e e e e e e e e e e e e

17.8.1 Solution e e e e e e e

18 Standard Library Traits
18.1 Comparisons e e e e e e e
182 Operators v v v i e e e e e e e e e e
183 Fromand Into L e
184 Casting e e
185 ReadandWrite L

82
82
84
84
85
86
86
87
88

89
89
90
91
92
93
94
95
96

18.6 The Default Trait o o e e e e e e e e
18.7 Exercise: ROT13 o o e e e e e e e e e
18.7.1 Solution e e e e e e e

V Day 3: Morning
19 Welcome to Day 3

20 Memory Management

20.1 Review of Program Memory Lo
20.2 Approaches to Memory Management
203 0wnership o e e e e e e e e e e
204 Move SemantiCs e e e e e e
205 Clone e e e
20.6 Copy Types o i e e e e e e e e
20.7 TheDrop Trait o e
20.8 Exercise: Builder Type

20.8.1 Solution

21 Smart Pointers
2L 1 BOXST> o o e e e e e e e e e e e
2L2RC . o o
21.3 Owned Trait Objects o i e
21.4 Exercise: Binary Tree e
21.4.1 Solution e e e

VI Day 3: Afternoon
22 Welcome Back

23 Borrowing
23.1 BorrowingaValue
23.2 Borrow Checking
23.3 Borrow Errors e e e e e e e e e
234 Interior Mutability Lo Lo
2341 Cell e e e e e
23.4.2 RefCell e e e e
23.5 Exercise: Health Statistics
23.5.1 Solution e e

24 Lifetimes
24.1 Lifetime Annotations e e e e e
24.2 Lifetimesin FunctionCalls
24.3 Lifetimes in Data Structures i e e e e
24.4 Exercise: ProtobufParsing L Lo
24.4.1 Solution e e e e e e

120
121

122
122
123
124
125
127
128
129
130
132

134
134
136
136
138
140

VII Day 4: Morning
25 Welcome to Day 4

26 Iterators

26.1 Motivating Iteratorso e e e e
26.2 Tterator Trait o e e e
26.3 Iterator Helper Methods,
264 collect e
26.5 Intolterator L e
26.6 Exercise: Iterator Method Chaining

26.6.1 Solution

27 Modules

27.1 Modules e
27.2 Filesystem Hierarchy o oo
273 Visibility
27.4 Visibility and Encapsulation Lo oo
275 use,super; self L e
27.6 Exercise: Modules fora GUI Library

27.6.1 Solution e

28 Testing
281 UnitTests o o e e e e e e e e
28.2 Other Typesof Tests o i ittt i e e
28.3 Compiler Lintsand Clippy o o o
28.4 Exercise: Luhn Algorithm
28.4.1 Solution e e e

VIII Day 4: Afternoon
29 Welcome Back

30 Error Handling

301 Panics e e e e e
30.2 Result e
30.3Try Operator v v v i i e e e e e e e e e
30.4 Try CONVErSIONS v v v v e e e e e e e e e e e e e e e e
30.5 Dynamic Error Typeso e
30.6 thiserror L. e
30.7 anyhowo L
30.8 Exercise: RewritingwithResult

30.8.1 Solution e e

31 Unsafe Rust
3l.1Unsafe Rust e e e e e e e e
31.2 Dereferencing Raw Pointers
31.3 Mutable Static Variables oo
314 UNIONS o o e e e e e e e e e e e e e e e e
31.5 Unsafe Functions e e e
31.5.1 Unsafe Rust Functions,

167
168

169
169
170
171
172
172
174
175

176
176
177
178
179
180
181
183

187
187
188
189
189
190

31.5.2 Unsafe External Functions 210

31.5.3 Calling Unsafe Functions 211

31.6 Implementing Unsafe Traits 212
31.7 Safe FFIWrapper. o i it e e e e e 212
31.7.1 Solution e e 215

IX Android 219
32 Welcome to Rust in Android 220
33 Setup 221
34 Build Rules 222
341 RustBinaries L. e 222
34.2 Rust Libraries e 223

35 AIDL 225
35.1 Birthday Service Tutorial 225
35.1.1 AIDL Interfaces e e 225

35.1.2 Generated Service API o e 226

35.1.3 Service Implementation L oL 226

35,14 AIDL SErver o v v v i it e e e e e e e 227

3515 Deployo e e 228

35.1.6 AIDLClient o v v it e 229

35.1.7 Changing API e e e 230

35.1.8 Updating Client and Service 230

35.2 Working With AIDL Types o i v it i it e i e e e 231
35.2.1 Primitive Types o o e e 231

35.2.2 Array Types o o o e e e e e e e e e e 231

35.2.3 Sending Objects e e e e 232

35.2.4 Parcelables 233

35.2.5 Sending Files 234

36 Testing in Android 236
36.1 GoogleTest L e e e e e e 237
36.2 MOCKING e 239
37 Logging 211
38 Interoperability 243
38.1 Interoperabilitywith C Lo 243
38.1.1 ASimpleCLibrary e 244

38.1.2 UsingBindgen e 244

38.1.3 Running OurBinary 245

38.1.4 ASimpleRust Library L oo 246

38.1.5 CallingRust e 246

382 WIith C++ . L o L o 247
38.2.1 The Bridge Module 247

38.2.2 Rust Bridge Declarations 248

3823 Generated C++ L. e e e e e e e 249

38.2.4 C++ Bridge Declarations 249

38.2.5 Shared Types o i i e e e
38.2.6 SharedEnums e
38.2.7 Rust Error Handling
3828 C++ErrorHandling
38.2.9 Additional Types e e
38.2.10Building in Androido L Lo
38.2.11Buildingin Android
38.2.12Buildingin Android Lo
38.3 InteroperabilitywithJava oo oL

X Chromium

39 Welcome to Rust in Chromium

40 Setup

41 Comparing Chromium and Cargo Ecosystems
42 Chromium Rust policy

43 Build rules
43.1 IncludingunsafeRustCodeo
43.2 Depending on Rust Code from Chromium C++
433 Visual StudioCode L
43.4 Build rulesexercise

44 Testing
441 rust_gtest_interopLibrary
442 GNRulesforRustTests i e
44.3 chromium: :import! Macro.o
444 Testing eXerciseo e e e e

45 Interoperability with C++

45.1 Example Bindings Lo
45.2 Limitations of CXX o e
453 CXX Error Handling e

45.3.1 CXX Error Handling: QRExample

45.3.2 CXX Error Handling: PNG Example
454 Using cxx in Chromiumo Lo e
45.5 Exercise: Interoperabilitywith C++

46 Adding Third Party Crates

46.1 Configuring the Cargo.toml filetoadd crates
46.2 Configuring gnrt_config.toml
46.3 Downloading Crates o i i i e e e e e e
46.4 GeneratinggnBuildRules oo o oL,
46.5 Resolving Problems

46.5.1 Build Scripts Which GenerateCode

46.5.2 Build Scripts Which Build C++ or Take Arbitrary Actions
46.6 DependingonaCratet e
46.7 Auditing Third Party Crates o v v v v v i e

257
258
259

46.8 Checking Crates into Chromium SourceCode
46.9 Keeping CratesUptoDate
46.1CEXEICISEt v e e e e e e e e e e e e e e e e

47 Bringing It Together - Exercise

48 Exercise Solutions

XI Bare Metal: Morning
49 Welcome to Bare Metal Rust

50 no_std
50.1 Aminimal no_std program e e e
50.2 a110C e e

51 Microcontrollers

511 RawMMIO o
51.2 Peripheral AccessCrates e
SI3HAL crates e e e e e
51.4 Board supportcrates h e e e e e e e
51.5 The type state pattern e
51.6 embedded-hal
51.7 probe-rs and cargo-embed Lo

51.7.1 Debugging
51.8 Other projects e

52 Exercises
521 Compass o e e e e e e e e e
52.2 Bare Metal Rust Morning Exercise

XII Bare Metal: Afternoon

53 Application processors
53.1 Getting ReadytoRust
532 Inlineassembly L
53.3 Volatile memory accessfor MMIO
534 Let'swrite a UART driver e
53.4.1 Moretraits e e
53.4.2 Usingit o i e e e e e e e e e
53.5 Abetter UART Ariver o i it e e
53.5.1 Bitflags L
53.5.2 Multipleregisterso
5353 Driver e e e e
53.6 safe-mmio L
53.6.1 Driver e e e e e
53.6.2 UsingIt e
53.7L08EING e e e e e
53.7.1 Usingit e
53.8 EXCEPLiONS e e e e e e e e e e e

287
288

290
291
291

293
293
295
296
297
297
298
298
299
299

301
301
303

53.9 aarchb64-rt e e e e e e e e 325

53.100ther projects e e e e e e e e e e 326
54 Useful crates 327
54.1 ZETOCOPY .« + « v v v v e e e e e e e e e e e 327
54.2 aarchb4-paging. e e e e 328
54.3 buddy_system_allocator e 328
544 TINYVEC . . . o i v i e e e e e e e e e e 329
545 SPIN . . oL e e e e e 329
55 Bare-Metal on Android 331
55.1 vimbase e e e e e e e e e e e e e 332
56 Exercises 333
56.1 RTCArIiVer o o e e e e e e e e e e e e e e 333
56.2 Bare Metal Rust Afternoon o v v i e e e e 340
XIIT Concurrency: Morning 345
57 Welcome to Concurrency in Rust 346
58 Threads 347
58.1 Plain Threads i i i e e e e e e e e e e 347
58.2 Scoped Threads e e 348
59 Channels 350
59.1 Senders and Receivers i e e e e e e e e e 350
59.2 Unbounded Channels e 351
59.3 Bounded Channels e e 351
60 Send and Sync 353
60.1 Marker Traits e e e e e e e e e e 353
60.2 Send e e e 353
B0.3 SYNC . . . o e e e e e e 354
60.4 Examples e 354
61 Shared State 356
61.1 ATC . . . o e e e e e e 356
61.2 MULEX o e e e e e e e e e e e e e e e e 357
61.3 Example e e e e e e e e e 358
62 Exercises 360
62.1 Dining Philosophers L Lo 360
62.2 Multi-threaded Link Checker 361
62.3 Solutions e e e e e e e e 364
XIV Concurrency: Afternoon 369
63 Welcome 370

64 Async Basics 371

64.1 async/await L 371
64.2 Futures e e e e 372
64.3 State Machine e 373
644 Runtimes L. e e 375
64.4.1 TokKio e 375

64.5 Tasks L 376

65 Channels and Control Flow 377
65.1 AsyncChannels L e 377
65.2 JOIN e e e e e e e e e e e 378
65.3 Select L e e e e 379
66 Pitfalls 380
66.1 Blocking theexecutor e 380
66.2 Pin e e e 381
66.3 Async Traits L e 383
66.4 Cancellation e 385

67 Exercises 388
67.1 Dining Philosophers-—-Async 388
67.2 Broadcast Chat Application 389
67.3 Solutions 392
XV Idiomatic Rust 397
68 Welcome to Idiomatic Rust 398
69 Leveraging the Type System 401
69.1 Newtype Pattern e 402
69.1.1 Semantic Confusion L oo 402

69.1.2 Parse, Don't Validateo 403

69.1.3 Is It Truly Encapsulated? 404

69.2 Extension Traits 405
69.2.1 Extending Foreign Types v i 406

69.2.2 Method Resolution Conflicts 406

69.2.3 Trait Method Conflicts 408

69.2.4 Extending Other Traits 409

69.2.5 Should I Define An Extension Trait? 410

69.3 Typestate Pattern: Problem 411
69.3.1 Typestate Pattern: Example 412

69.3.2 Beyond Simple Typestate, 414

69.3.3 Typestate Pattern with Generics 416

69.4 ToRen Types o o i e e e e e 421
69.4.1 Permission Tokens 422

69.4.2 Token Types with Data: MutexGuards 423

69.4.3 Variable-Specific Tokens (Branding 1/4) 424

69.4.4 PhantomData and Lifetime Subtyping (Branding 2/4) 425

69.4.5 Implementing Branded Types (Branding 3/4) 428

69.4.6 Branded Types in Action (Branding4/4) 429

10

XVI Unsafe 431

70 Welcome to Unsafe Rust 432
71 Setting Up 433
72 Motivations 434
72.1 Interoperability e 434
72.2 Data Structures e e e e e e e e e e e e e e e e e 438
72.3 Performance e e e e e e e e e e e e e e e e 438
73 Foundations 439
73.1 Whatis “unsafety” L. 439
73.2 Whenisunsafe used? e e 441
73.3 Data structures aresafe L. 441
73.4 .. but actions on them mightnotbe 442
73.5 Less powerful thanitseems 442
XVII Final Words 444
74 Thanks! 445
75 Glossary 446
76 Other Rust Resources 451
77 Credits 453

11

Welcome to Comprehensive Rust
ﬁ‘

This is a free Rust course developed by the Android team at Google. The course covers the
full spectrum of Rust, from basic syntax to advanced topics like generics and error handling.

The latest version of the course can be found at https:/google.github.io/
comprehensive-rust/. If you are reading somewhere else, please check there for
updates.

The course is available in other languages. Select your preferred language in the
top right corner of the page or check the Translations page for a list of all available
translations.

The course is also available as a PDF.

The goal of the course is to teach you Rust. We assume you don't know anything about Rust
and hope to:

* Give you a comprehensive understanding of the Rust syntax and language.
* Enable you to modify existing programs and write new programs in Rust.
* Show you common Rust idioms.

We call the first four course days Rust Fundamentals.
Building on this, you're invited to dive into one or more specialized topics:

* Android: a half-day course on using Rust for Android platform development (AOSP).
This includes interoperability with C, C++, and Java.

* Chromium: a half-day course on using Rust in Chromium-based browsers. This includes
interoperability with C++ and how to include third-party crates in Chromium.

» Bare-metal: a whole-day class on using Rust for bare-metal (embedded) development.
Both microcontrollers and application processors are covered.

* Concurrency: a whole-day class on concurrency in Rust. We cover both classical con-
currency (preemptively scheduling using threads and mutexes) and async/await con-
currency (cooperative multitasking using futures).

12

https://github.com/google/comprehensive-rust/actions/workflows/build.yml?query=branch%3Amain
https://github.com/google/comprehensive-rust/graphs/contributors
https://github.com/google/comprehensive-rust/stargazers
https://google.github.io/comprehensive-rust/
https://google.github.io/comprehensive-rust/
https://insyncwithfoo.github.io/comprehensive-rust/comprehensive-rust.pdf

Non-Goals
Rust is a large language and we won't be able to cover all of it in a few days. Some non-goals
of this course are:

* Learning how to develop macros: please see the Rust Book and Rust by Example instead.

Assumptions

The course assumes that you already know how to program. Rust is a statically-typed language
and we will sometimes make comparisons with C and C++ to better explain or contrast the
Rust approach.

If you know how to program in a dynamically-typed language such as Python or JavaScript,
then you will be able to follow along just fine too.

This is an example of a speaker note. We will use these to add additional information to
the slides. This could be key points which the instructor should cover as well as answers to
typical questions which come up in class.

13

https://doc.rust-lang.org/book/
https://doc.rust-lang.org/rust-by-example/macros.html

Chapter 1

Running the Course

This page is for the course instructor.

Here is a bit of background information about how we've been running the course internally
at Google.

We typically run classes from 9:00 am to 4:00 pm, with a 1 hour lunch break in the middle.
This leaves 3 hours for the morning class and 3 hours for the afternoon class. Both sessions
contain multiple breaks and time for students to work on exercises.

Before you run the course, you will want to:

1.

Make yourself familiar with the course material. We've included speaker notes to help
highlight the key points (please help us by contributing more speaker notes!). When
presenting, you should make sure to open the speaker notes in a popup (click the link
with a little arrow next to ”Speaker Notes”). This way you have a clean screen to present
to the class.

Decide on the dates. Since the course takes four days, we recommend that you schedule
the days over two weeks. Course participants have said that they find it helpful to have
a gap in the course since it helps them process all the information we give them.

Find a room large enough for your in-person participants. We recommend a class size
of 15-25 people. That's small enough that people are comfortable asking questions ---
it's also small enough that one instructor will have time to answer the questions. Make
sure the room has desks for yourself and for the students: you will all need to be able to
sit and work with your laptops. In particular, you will be doing a lot of live-coding as an
instructor, so a lectern won't be very helpful for you.

On the day of your course, show up to the room a little early to set things up. We
recommend presenting directly using mdbook serve running on your laptop (see the
installation instructions). This ensures optimal performance with no lag as you change
pages. Using your laptop will also allow you to fix typos as you or the course participants
spot them.

Let people solve the exercises by themselves or in small groups. We typically spend 30-45
minutes on exercises in the morning and in the afternoon (including time to review the
solutions). Make sure to ask people if they're stuck or if there is anything you can help
with. When you see that several people have the same problem, call it out to the class

14

https://github.com/google/comprehensive-rust#building

and offer a solution, e.g., by showing people where to find the relevant information in
the standard library.

That is all, good luck running the course! We hope it will be as much fun for you as it has
been for us!

Please provide feedback afterwards so that we can keep improving the course. We would
love to hear what worked well for you and what can be made better. Your students are also
very welcome to send us feedback!

Instructor Preparation

* Go through all the material: Before teaching the course, make sure you have gone
through all the slides and exercises yourself. This will help you anticipate questions
and potential difficulties.

* Prepare for live coding: The course involves a lot of live coding. Practice the examples
and exercises beforehand to ensure you can type them out smoothly during the class.
Have the solutions ready in case you get stuck.

* Familiarize yourself with mdbook: The course is presented using mdbook. Knowing
how to navigate, search, and use its features will make the presentation smoother.

* Slice size helper: Press Ctrl + Alt + B to toggle a visual guide showing the amount of
space available when presenting. Expect any content outside of the red box to be hidden
initially. Use this as a guide when editing slides. You can also enable it via this link.

Creating a Good Learning Environment

* Encourage questions: Reiterate that there are no ”stupid” questions. A welcoming
atmosphere for questions is crucial for learning.

» Manage time effectively: Keep an eye on the schedule, but be flexible. It's more
important that students understand the concepts than sticking rigidly to the timeline.

» Facilitate group work: During exercises, encourage students to work together. This
can help them learn from each other and feel less stuck.

1.1 Course Structure

This page is for the course instructor.

Rust Fundamentals

The first four days make up Rust Fundamentals. The days are fast-paced and we cover a lot
of ground!

Course schedule:

* Day 1 Morning (2 hours and 10 minutes, including breaks)

Segment Duration
Welcome 5 minutes
Hello, World 15 minutes
Types and Values 40 minutes

15

https://github.com/google/comprehensive-rust/discussions/86
https://github.com/google/comprehensive-rust/discussions/100

Segment

Duration

Control Flow Basics 45 minutes

* Day 1 Afternoon (2 hours and 45 minutes, including breaks)

Segment

Duration

Tuples and Arrays 35 minutes

References

55 minutes

User-Defined Types 1 hour

* Day 2 Morning (2 hours and 50 minutes, including breaks)

Segment

Duration

Welcome

3 minutes

Pattern Matching 50 minutes
Methods and Traits 45 minutes

Generics

50 minutes

Day 2 Afternoon (2 hours and 50 minutes, including breaks)

Segment

Duration

Closures

30 minutes

Standard Library Types 1 hour
Standard Library Traits 1 hour

Day 3 Morning (2 hours and 20 minutes, including breaks)

Segment

Duration

Welcome

3 minutes

Memory Management 1 hour

Smart Pointers

55 minutes

Day 3 Afternoon (1 hour and 55 minutes, including breaks)

Segment

Duration

Borrowing 55 minutes

Lifetimes

50 minutes

Day 4 Morning (2 hours and 50 minutes, including breaks)

Segment

Duration

Welcome

3 minutes

16

Segment Duration

Iterators 55 minutes
Modules 45 minutes
Testing 45 minutes

» Day 4 Afternoon (2 hours and 20 minutes, including breaks)

Segment Duration

Error Handling 55 minutes
Unsafe Rust 1 hour and 15 minutes

Deep Dives

In addition to the 4-day class on Rust Fundamentals, we cover some more specialized topics:

Rust in Android

The Rust in Android deep dive is a half-day course on using Rust for Android platform
development. This includes interoperability with C, C++, and Java.

You will need an AOSP checkout. Make a checkout of the course repository on the same
machine and move the src/android/ directory into the root of your AOSP checkout. This
will ensure that the Android build system sees the Android. bp files in src/android/.

Ensure that adb sync works with your emulator or real device and pre-build all Android
examples using src/android/build_all. sh. Read the script to see the commands it runs
and make sure they work when you run them by hand.

Rust in Chromium

The Rust in Chromium deep dive is a half-day course on using Rust as part of the Chromium
browser. It includes using Rust in Chromium's gn build system, bringing in third-party
libraries (“crates”) and C++ interoperability.

You will need to be able to build Chromium --- a debug, component build is recommended for
speed but any build will work. Ensure that you can run the Chromium browser that you've
built.

Bare-Metal Rust

The Bare-Metal Rust deep dive is a full day class on using Rust for bare-metal (embedded)
development. Both microcontrollers and application processors are covered.

For the microcontroller part, you will need to buy the BBC micro:bit v2 development board
ahead of time. Everybody will need to install a number of packages as described on the
welcome page.

17

https://source.android.com/docs/setup/download/downloading
https://github.com/google/comprehensive-rust
https://microbit.org/

Concurrency in Rust

The Concurrency in Rust deep dive is a full day class on classical as well as async/await
concurrency.

You will need a fresh crate set up and the dependencies downloaded and ready to go. You
can then copy/paste the examples into src/main.rs to experiment with them:

cargo init concurrency

cd concurrency

cargo add tokio --features full
cargo run

Course schedule:

* Morning (3 hours and 20 minutes, including breaks)

Segment Duration
Threads 30 minutes
Channels 20 minutes

Send and Sync 15 minutes
Shared State 30 minutes
Exercises 1 hour and 10 minutes

» Afternoon (3 hours and 30 minutes, including breaks)

Segment Duration

Async Basics 40 minutes

Channels and Control Flow 20 minutes

Pitfalls 55 minutes

Exercises 1 hour and 10 minutes

Idiomatic Rust

The Idiomatic Rust deep dive is a 2-day class on Rust idioms and patterns.
You should be familiar with the material in Rust Fundamentals before starting this course.
Course schedule:

* Morning (3 hours and 35 minutes, including breaks)

Segment Duration

Leveraging the Type System 3 hours and 35 minutes

Unsafe (Work in Progress)

The Unsafe deep dive is a two-day class on the unsafe Rust language. It covers the fundamentals
of Rust's safety guarantees, the motivation for unsafe, review process for unsafe code, FFI
basics, and building data structures that the borrow checker would normally reject.

Course schedule:

18

* Day 1 Morning (1 hour, including breaks)

Segment Duration

Setup 2 minutes
Motivations 20 minutes
Foundations 25 minutes

Format

The course is meant to be very interactive and we recommend letting the questions drive the
exploration of Rust!

1.2 Keyboard Shortcuts

There are several useful keyboard shortcuts in mdBook:
» Arrow-Left: Navigate to the previous page.
» Arrow-Right: Navigate to the next page.
» Ctrl + Enter: Execute the code sample that has focus.

» s: Activate the search bar.

Mention that these shortcuts are standard for mdbook and can be useful when navigating
any mdbook-generated site.

* You can demonstrate each shortcut live to the students.

The s key for search is particularly useful for quickly finding topics that have been
discussed earlier.

Ctrl + Enter will be super important for you since you'll do a lot of live coding.

1.3 Translations

The course has been translated into other languages by a set of wonderful volunteers:

* Brazilian Portuguese by @rastringer, @hugojacob, @joaovicmendes, and @henrif75.

* Chinese (Simplified) by @suetfei, @wnghl, @anlunx, @kongy, @noahdragon, @super-
whd, @SketchK, and @nodmp.

* Chinese (Traditional) by @hueich, @victorhsieh, @mingyc, @kuanhungchen, and
@johnathan79717.

* Farsi by @DannyRavi, @javad-jafari, @Alix1383, @moaminsharifi, @hamidrezakp and
@mehrad77.

* Japanese by @CoinEZ-JPN, @momotaro1105, @HidenoriKobayashi and @kantasv.

* Korean by @keispace, @jiyongp, @jooyunghan, and @namhyung.

* Spanish by @deavid.

* Ukrainian by @git-user-cpp, @yaremam and @reta.

Use the language picker in the top-right corner to switch between languages.

19

https://google.github.io/comprehensive-rust/pt-BR/
https://github.com/rastringer
https://github.com/hugojacob
https://github.com/joaovicmendes
https://github.com/henrif75
https://google.github.io/comprehensive-rust/zh-CN/
https://github.com/suetfei
https://github.com/wnghl
https://github.com/anlunx
https://github.com/kongy
https://github.com/noahdragon
https://github.com/superwhd
https://github.com/superwhd
https://github.com/nodmp
https://google.github.io/comprehensive-rust/zh-TW/
https://github.com/hueich
https://github.com/victorhsieh
https://github.com/mingyc
https://github.com/kuanhungchen
https://github.com/johnathan79717
https://google.github.io/comprehensive-rust/fa/
https://github.com/DannyRavi
https://github.com/javad-jafari
https://github.com/alix1383
https://github.com/moaminsharifi
https://github.com/hamidrezakp
https://github.com/mehrad77
https://google.github.io/comprehensive-rust/ja/
https://github.com/CoinEZ
https://github.com/momotaro1105
https://github.com/HidenoriKobayashi
https://github.com/kantasv
https://google.github.io/comprehensive-rust/ko/
https://github.com/keispace
https://github.com/jiyongp
https://github.com/jooyunghan
https://github.com/namhyung
https://google.github.io/comprehensive-rust/es/
https://github.com/deavid
https://google.github.io/comprehensive-rust/uk/
https://github.com/git-user-cpp
https://github.com/yaremam
https://github.com/reta

Incomplete Translations

There is a large number of in-progress translations. We link to the most recently updated
translations:

* Arabic by @younies

* Bengali by @raselmandol.

* French by @Kooka$S, @vcaen and @AdrienBaudemont.
* German by @Throvn and @ronaldfw.

* Italian by @henrythebuilder and @detro.

The full list of translations with their current status is also available either as of their last
update or synced to the latest version of the course.

If you want to help with this effort, please see our instructions for how to get going. Transla-
tions are coordinated on the issue tracker.

 This is a good opportunity to thank the volunteers who have contributed to the transla-
tions.

o Ifthere are students in the class who speak any of the listed languages, you can encourage
them to check out the translated versions and even contribute if they find any issues.

* Highlight that the project is open source and contributions are welcome, not just for
translations but for the course content itself.

20

https://google.github.io/comprehensive-rust/ar/
https://github.com/younies
https://google.github.io/comprehensive-rust/bn/
https://github.com/raselmandol
https://google.github.io/comprehensive-rust/fr/
https://github.com/KookaS
https://github.com/vcaen
https://github.com/AdrienBaudemont
https://google.github.io/comprehensive-rust/de/
https://github.com/Throvn
https://github.com/ronaldfw
https://google.github.io/comprehensive-rust/it/
https://github.com/henrythebuilder
https://github.com/detro
https://google.github.io/comprehensive-rust/translation-report.html
https://google.github.io/comprehensive-rust/translation-report.html
https://google.github.io/comprehensive-rust/synced-translation-report.html
https://github.com/google/comprehensive-rust/blob/main/TRANSLATIONS.md
https://github.com/google/comprehensive-rust/issues/282

Chapter 2

Using Cargo

When you start reading about Rust, you will soon meet Cargo, the standard tool used in the
Rust ecosystem to build and run Rust applications. Here we want to give a brief overview of
what Cargo is and how it fits into the wider ecosystem and how it fits into this training.

Installation

Please follow the instructions on https://rustup.rs/.

This will give you the Cargo build tool (cargo) and the Rust compiler (rustc). You will also
get rustup, a command line utility that you can use to install different compiler versions.

After installing Rust, you should configure your editor or IDE to work with Rust. Most editors
do this by talking to rust-analyzer, which provides auto-completion and jump-to-definition
functionality for VS Code, Emacs, Vim/Neovim, and many others. There is also a different IDE
available called RustRover.

* On Debian/Ubuntu, you can install rustup via apt:
sudo apt install rustup

* On macOS, you can use Homebrew to install Rust, but this may provide an outdated
version. Therefore, it is recommended to install Rust from the official site.

2.1 The Rust Ecosystem

The Rust ecosystem consists of a number of tools, of which the main ones are:

* rustc: the Rust compiler that turns .rs files into binaries and other intermediate
formats.

* cargo: the Rust dependency manager and build tool. Cargo knows how to download
dependencies, usually hosted on https://crates.io, and it will pass them to rustc when
building your project. Cargo also comes with a built-in test runner which is used to
execute unit tests.

21

https://doc.rust-lang.org/cargo/
https://rustup.rs/
https://rust-analyzer.github.io/
https://code.visualstudio.com/
https://rust-analyzer.github.io/manual.html#emacs
https://rust-analyzer.github.io/manual.html#vimneovim
https://www.jetbrains.com/rust/
https://brew.sh/
https://crates.io

» rustup: the Rust toolchain installer and updater. This tool is used to install and update
rustc and cargo when new versions of Rust are released. In addition, rustup can also
download documentation for the standard library. You can have multiple versions of
Rust installed at once and rustup will let you switch between them as needed.

Key points:

* Rust has a rapid release schedule with a new release coming out every six weeks. New
releases maintain backwards compatibility with old releases --- plus they enable new
functionality.

* There are three release channels: ”stable”, ”beta”, and “nightly”.

» New features are being tested on "nightly”, beta” is what becomes ”stable” every six
weeks.

* Dependencies can also be resolved from alternative registries, git, folders, and more.

Rust also has editions: the current edition is Rust 2024. Previous editions were Rust
2015, Rust 2018 and Rust 2021.

— The editions are allowed to make backwards incompatible changes to the language.

— To prevent breaking code, editions are opt-in: you select the edition for your crate
via the Cargo. toml file.

— To avoid splitting the ecosystem, Rust compilers can mix code written for different
editions.

— Mention that it is quite rare to ever use the compiler directly not through cargo
(most users never do).

— It might be worth alluding that Cargo itself is an extremely powerful and compre-
hensive tool. It is capable of many advanced features including but not limited
to:

* Project/package structure

* workspaces

* Dev Dependencies and Runtime Dependency management/caching

% build scripting

* global installation

* It is also extensible with sub command plugins as well (such as cargo clippy).

— Read more from the official Cargo Book

2.2 Code Samples in This Training

For this training, we will mostly explore the Rust language through examples which can be
executed through your browser. This makes the setup much easier and ensures a consistent
experience for everyone.

Installing Cargo is still encouraged: it will make it easier for you to do the exercises. On the
last day, we will do a larger exercise that shows you how to work with dependencies and for
that you need Cargo.

The code blocks in this course are fully interactive:

22

https://doc.rust-lang.org/cargo/reference/registries.html
https://doc.rust-lang.org/edition-guide/
https://doc.rust-lang.org/cargo/reference/workspaces.html
https://doc.rust-lang.org/cargo/reference/build-scripts.html
https://doc.rust-lang.org/cargo/commands/cargo-install.html
https://github.com/rust-lang/rust-clippy
https://doc.rust-lang.org/cargo/

fn main() {
println! ("Edit me!");
}

You can use Ctrl + Enter to execute the code when focus is in the text box.

Most code samples are editable like shown above. A few code samples are not editable for
various reasons:

* The embedded playgrounds cannot execute unit tests. Copy-paste the code and open it
in the real Playground to demonstrate unit tests.

* The embedded playgrounds lose their state the moment you navigate away from the
page! This is the reason that the students should solve the exercises using a local Rust
installation or via the Playground.

2.3 Running Code Locally with Cargo

If you want to experiment with the code on your own system, then you will need to first
install Rust. Do this by following the instructions in the Rust Book. This should give you a
working rustc and cargo. At the time of writing, the latest stable Rust release has these
version numbers:

% rustc --version
rustc 1.69.0 (84c898d65 2023-04-16)
% cargo --version
cargo 1.69.0 (6e9a83356 2023-04-12)

You can use any later version too since Rust maintains backwards compatibility.

With this in place, follow these steps to build a Rust binary from one of the examples in this
training:

1. Click the ”Copy to clipboard” button on the example you want to copy.

2. Use cargo new exercise to create a new exercise/ directory for your code:

$ cargo new exercise
Created binary (application) “exercise’ package

3. Navigate into exercise/ and use cargo run to build and run your binary:

$ cd exercise
$ cargo run
Compiling exercise v@.1.0 (/home/mgeisler/tmp/exercise)
Finished dev [unoptimized + debuginfo] target(s) in @.75s
Running "target/debug/exercise’
Hello, world!

4. Replace the boilerplate code in src/main. rs with your own code. For example, using
the example on the previous page, make src/main.rs look like

fn main() {
println! ("Edit me!");
}

5. Use cargo run to build and run your updated binary:

23

https://doc.rust-lang.org/book/ch01-01-installation.html

$ cargo run
Compiling exercise v@.1.0 (/home/mgeisler/tmp/exercise)

Finished dev [unoptimized + debuginfo] target(s) in @.24s
Running "target/debug/exercise’
Edit me!
6. Use cargo check to quickly check your project for errors, use cargo build to com-
pile it without running it. You will find the output in target/debug/ for a normal
debug build. Use cargo build --release to produce an optimized release build in

target/release/.

7. You can add dependencies for your project by editing Cargo.toml. When you run
cargo commands, it will automatically download and compile missing dependencies

for you.

Try to encourage the class participants to install Cargo and use a local editor. It will make
their life easier since they will have a normal development environment.

24

Part1

Day 1: Morning

25

Chapter 3

Welcome to Day 1

This is the first day of Rust Fundamentals. We will cover a lot of ground today:

* Basic Rust syntax: variables, scalar and compound types, enums, structs, references,
functions, and methods.

* Types and type inference.

* Control flow constructs: loops, conditionals, and so on.

» User-defined types: structs and enumes.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 10 minutes. It contains:

Segment Duration
Welcome 5 minutes
Hello, World 15 minutes
Types and Values 40 minutes

Control Flow Basics 45 minutes

This slide should take about 5 minutes.
Please remind the students that:

* They should ask questions when they get them, don't save them to the end.
» The class is meant to be interactive and discussions are very much encouraged!

— As an instructor, you should try to keep the discussions relevant, i.e., keep the
discussions related to how Rust does things vs. some other language. It can be
hard to find the right balance, but err on the side of allowing discussions since they
engage people much more than one-way communication.

* The questions will likely mean that we talk about things ahead of the slides.

— This is perfectly okay! Repetition is an important part of learning. Remember that

the slides are just a support and you are free to skip them as you like.

The idea for the first day is to show the ”basic” things in Rust that should have immediate
parallels in other languages. The more advanced parts of Rust come on the subsequent days.

26

If you're teaching this in a classroom, this is a good place to go over the schedule. Note that
there is an exercise at the end of each segment, followed by a break. Plan to cover the exercise
solution after the break. The times listed here are a suggestion in order to keep the course on
schedule. Feel free to be flexible and adjust as necessary!

27

Chapter 4

Hello, World

This segment should take about 15 minutes. It contains:

Slide Duration

What is Rust? 10 minutes
Benefits of Rust 3 minutes
Playground 2 minutes

4.1 What is Rust?

Rust is a new programming language that had its 1.0 release in 2015:

* Rust is a statically compiled language in a similar role as C++
— rustc uses LLVM as its backend.
* Rust supports many platforms and architectures:
— x86, ARM, WebAssembly, ...
— Linux, Mac, Windows, ...
* Rust is used for a wide range of devices:
— firmware and boot loaders,
— smart displays,
— mobile phones,
— desktops,
- servers.

This slide should take about 10 minutes.
Rust fits in the same area as C++:

 High flexibility.

* High level of control.

Can be scaled down to very constrained devices such as microcontrollers.
* Has no runtime or garbage collection.

Focuses on reliability and safety without sacrificing performance.

28

https://blog.rust-lang.org/2015/05/15/Rust-1.0.html
https://doc.rust-lang.org/nightly/rustc/platform-support.html

4.2 Benefits of Rust

Some unique selling points of Rust:

» Compile time memory safety - whole classes of memory bugs are prevented at compile
time

— No uninitialized variables.

— No double-frees.

— No use-after-free.

— No NULL pointers.

— No forgotten locked mutexes.

— No data races between threads.
— No iterator invalidation.

* No undefined runtime behavior - what a Rust statement does is never left unspecified

— Array access is bounds checked.
— Integer overflow is defined (panic or wrap-around).

* Modern language features - as expressive and ergonomic as higher-level languages

— Enums and pattern matching.

— Generics.

— No overhead FFI.

— Zero-cost abstractions.

— Great compiler errors.

— Built-in dependency manager.

— Built-in support for testing.

— Excellent Language Server Protocol support.

This slide should take about 3 minutes.
Do not spend much time here. All of these points will be covered in more depth later.

Make sure to ask the class which languages they have experience with. Depending on the
answer you can highlight different features of Rust:

» Experience with C or C++: Rust eliminates a whole class of runtime errors via the borrow
checker. You get performance like in C and C++, but you don't have the memory unsafety
issues. In addition, you get a modern language with constructs like pattern matching
and built-in dependency management.

» Experience with Java, Go, Python, JavaScript...: You get the same memory safety as in
those languages, plus a similar high-level language feeling. In addition you get fast
and predictable performance like C and C++ (no garbage collector) as well as access to
low-level hardware (should you need it).

4.3 Playground

The Rust Playground provides an easy way to run short Rust programs, and is the basis for
the examples and exercises in this course. Try running the “hello-world” program it starts
with. It comes with a few handy features:

* Under *Tools”, use the rustfmt option to format your code in the ”standard” way.

29

https://play.rust-lang.org/

* Rust has two main ”profiles” for generating code: Debug (extra runtime checks, less
optimization) and Release (fewer runtime checks, lots of optimization). These are
accessible under "Debug” at the top.

» If you're interested, use ’ASM” under ”...” to see the generated assembly code.
This slide should take about 2 minutes.

As students head into the break, encourage them to open up the playground and experiment
a little. Encourage them to keep the tab open and try things out during the rest of the course.
This is particularly helpful for advanced students who want to know more about Rust's
optimizations or generated assembly.

30

Chapter 5

Types and Values

This segment should take about 40 minutes. It contains:

Slide Duration

Hello, World 5 minutes
Variables 5 minutes
Values 5 minutes
Arithmetic 3 minutes
Type Inference 3 minutes

Exercise: Fibonacci 15 minutes

5.1 Hello, World

Let us jump into the simplest possible Rust program, a classic Hello World program:

fn main() {
println!("Hello @'");
}

What you see:

* Functions are introduced with fn.

The main function is the entry point of the program.

Blocks are delimited by curly braces like in C and C++.

Statements end with ;.

printlnis a macro, indicated by the ! in the invocation.

Rust strings are UTF-8 encoded and can contain any Unicode character.

This slide should take about 5 minutes.

This slide tries to make the students comfortable with Rust code. They will see a ton of it over
the next four days so we start small with something familiar.

Key points:

* Rust is very much like other languages in the C/C++/Java tradition. It is imperative and
it doesn't try to reinvent things unless absolutely necessary.

31

* Rust is modern with full support for Unicode.

* Rust uses macros for situations where you want to have a variable number of arguments
(no function overloading).

* println! is a macro because it needs to handle an arbitrary number of arguments
based on the format string, which can't be done with a regular function. Otherwise it
can be treated like a regular function.

* Rust is multi-paradigm. For example, it has powerful object-oriented programming
features, and, while it is not a functional language, it includes a range of functional
concepts.

5.2 Variables

Rust provides type safety via static typing. Variable bindings are made with let:

fn main() {
let x: i32 = 10;
println! ("x: {x}");

}
This slide should take about 5 minutes.

* Uncomment the x = 20 to demonstrate that variables are immutable by default. Add
the mut keyword to allow changes.

* Warnings are enabled for this slide, such as for unused variables or unnecessary mut.
These are omitted in most slides to avoid distracting warnings. Try removing the
mutation but leaving the mut keyword in place.

* The 132 here is the type of the variable. This must be known at compile time, but type
inference (covered later) allows the programmer to omit it in many cases.

5.3 Values

Here are some basic built-in types, and the syntax for literal values of each type.

Types Literals

Signed integers 18,116,1i32,164,1128,isize -10,0,1_000,123_1i64
Unsigned integers u8,ul6, u3d2, ubd, ul2g, usize 0,123,10_ul6
Floating point 32, f64 3.14,-10.0e20,2_f32
numbers

Unicode scalar char 'a', 'a', '«!'

values

Booleans bool true, false

The types have widths as follows:
e iN, uN, and fN are N bits wide,

32

https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch17-00-oop.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html
https://doc.rust-lang.org/book/ch13-00-functional-features.html

* isize and usize are the width of a pointer,
* char is 32 bits wide,
* bool is 8 bits wide.

This slide should take about 5 minutes.
There are a few syntaxes that are not shown above:

 All underscores in numbers can be left out, they are for legibility only. So 1_00@ can be
written as 1000 (or 10_00), and 123_1i64 can be written as 123164.

5.4 Arithmetic

fn interproduct(a: i32, b: 132, c: 132) -> 132 {
return a * b+ b *c+ c * a;

}

fn main() {
println!("result: {}", interproduct(120, 100, 248));
}

This slide should take about 3 minutes.

This is the first time we've seen a function other than main, but the meaning should be clear:
it takes three integers, and returns an integer. Functions will be covered in more detail later.

Arithmetic is very similar to other languages, with similar precedence.

What about integer overflow? In C and C++ overflow of signed integers is actually undefined,
and might do unknown things at runtime. In Rust, it's defined.

Change the 132's to 116 to see an integer overflow, which panics (checked) in a debug build
and wraps in a release build. There are other options, such as overflowing, saturating,
and carrying. These are accessed with method syntax, e.g., (a * b).saturating_add(b *
c).saturating_add(c * a).

In fact, the compiler will detect overflow of constant expressions, which is why the example
requires a separate function.

5.5 Type Inference

Rust will look at how the variable is used to determine the type:
fn takes_u32(x: u32) {

println! ("u32: {x}");
}

fn takes_i8(y: 1i8) {
println! ("i8: {y}");

}

fn main() {
let x = 10;
let y = 20;

33

takes_u32(x);

takes_i8(y);

// takes_u32(y);
}

This slide should take about 3 minutes.

This slide demonstrates how the Rust compiler infers types based on constraints given by
variable declarations and usages.

It is very important to emphasize that variables declared like this are not of some sort of
dynamic “any type” that can hold any data. The machine code generated by such declaration
is identical to the explicit declaration of a type. The compiler does the job for us and helps us
write more concise code.

When nothing constrains the type of an integer literal, Rust defaults to 132. This sometimes
appears as {integer} in error messages. Similarly, floating-point literals default to f64.

fn main() {
let x = 3.14;
let y = 20;
assert_eq!(x, y);
// ERROR: no implementation for "{float} == {integer}"

5.6 Exercise: Fibonacci

The Fibonacci sequence begins with [@, 1].Forn > 1, the next number is the sum of the
previous two.

Write a function fib (n) that calculates the nth Fibonacci number. When will this function
panic?

fn fib(n: u32) -> u32 {
ifn< 2 {
// The base case.
return todo! ("Implement this");
} else {
// The recursive case.
return todo! ("Implement this");

}

fn main() {

let n = 20;

println! ("fib({n}) = {}", fib(n));
}

This slide and its sub-slides should take about 15 minutes.

 This exercise is a classic introduction to recursion.
* Encourage students to think about the base cases and the recursive step.

34

* The question "When will this function panic?” is a hint to think about integer overflow.
The Fibonacci sequence grows quickly!

» Students might come up with an iterative solution as well, which is a great opportunity to
discuss the trade-offs between recursion and iteration (e.g., performance, stack overflow
for deep recursion).

5.6.1 Solution
fn fib(n: u32) -> u32 {

if n < 2 {
return n;
} else {

return fib(n - 1) + fib(n - 2);
}
}

fn main() {
let n = 20;
printIn! ("fib({n}) = {}", fib(n));

» Walk through the solution step-by-step.

» Explain the recursive calls and how they lead to the final result.

* Discuss the integer overflow issue. With u32, the function will panic for n around 47.
You can demonstrate this by changing the input to main.

» Show an iterative solution as an alternative and compare its performance and memory
usage with the recursive one. An iterative solution will be much more efficient.

More to Explore

For a more advanced discussion, you can introduce memoization or dynamic programming to
optimize the recursive Fibonacci calculation, although this is beyond the scope of the current
topic.

35

Chapter 6

Control Flow Basics

This segment should take about 45 minutes. It contains:

Slide Duration

Blocks and Scopes 5 minutes
if Expressions 4 minutes
match Expressions 5 minutes
Loops 5 minutes
break and continue 4 minutes
Functions 3 minutes
Macros 2 minutes

Exercise: Collatz Sequence 15 minutes

* We will now cover the many kinds of flow control found in Rust.

* Most of this will be very familiar to what you have seen in other programming languages.

6.1 Blocks and Scopes

* A block in Rust contains a sequence of expressions, enclosed by braces {}.
* The final expression of a block determines the value and type of the whole block.

fn main() {

let z = 13;

let x = {
let y = 10;
dbg!(y);
zZ -y

b

dbg ! (x);

}
If the last expression ends with ;, then the resulting value and type is ().

A variable's scope is limited to the enclosing block.

36

This slide should take about 5 minutes.

* You can explain that dbg! is a Rust macro that prints and returns the value of a given
expression for quick and dirty debugging.

* You can show how the value of the block changes by changing the last line in the block.
For instance, adding/removing a semicolon or using a retuzrn.

* Demonstrate that attempting to access y outside of its scope won't compile.

» Values are effectively "deallocated” when they go out of their scope, even if their data
on the stack is still there.

6.2 if expressions

You use if expressions exactly like if statements in other languages:

fn main() {
let x = 10;
if x == 0 {
println!("zero!");
} else if x < 100 {
println!("biggish");
} else {
println!("huge");
}
}

In addition, you can use if as an expression. The last expression of each block becomes the
value of the if expression:

fn main() {
let x = 10;
let size = if x < 20 { "small" } else { "large" };
println!("number size: {}", size);

}
This slide should take about 4 minutes.

Because if is an expression and must have a particular type, both of its branch blocks must
have the same type. Show what happens if you add ; after "small" in the second example.

An if expression should be used in the same way as the other expressions. For example,
whenitis used in a 1let statement, the statement must be terminated with a ; as well. Remove
the ; before println! to see the compiler error.

6.3 match Expressions

match can be used to check a value against one or more options:

fn main() {
let val = 1;
match val {
1 => println!("one"),

37

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-expressions

10 => println!("ten"),
100 => println!("one hundred"),
_ =

println!("something else");

}
}

Like if expressions, match can also return a value;

fn main() {
let flag = true;
let val = match flag {
true => 1,
false => 0,
}i
println!("The value of {flag} is {val}");
}

This slide should take about 5 minutes.

* match arms are evaluated from top to bottom, and the first one that matches has its
corresponding body executed.

* There is no fall-through between cases the way that switch works in other languages.

* The body of a match arm can be a single expression or a block. Technically this is the
same thing, since blocks are also expressions, but students may not fully understand
that symmetry at this point.

* match expressions need to be exhaustive, meaning they either need to cover all possible
values or they need to have a default case such as _. Exhaustiveness is easiest to demon-
strate with enums, but enums haven't been introduced yet. Instead we demonstrate
matching on a bool, which is the simplest primitive type.

 This slide introduces match without talking about pattern matching, giving students
a chance to get familiar with the syntax without front-loading too much information.
We'll be talking about pattern matching in more detail tomorrow, so try not to go into
too much detail here.

More to Explore

* To further motivate the usage of match, you can compare the examples to their equiva-
lents written with if. In the second case, matching ona bool,anif {} else {} block
is pretty similar. But in the first example that checks multiple cases, a match expression
can be more concise than if {} else if {} else if {} else.

* match also supports match guards, which allow you to add an arbitrary logical condition
that will get evaluated to determine if the match arm should be taken. However talking
about match guards requires explaining about pattern matching, which we're trying to
avoid on this slide.

38

6.4 Loops

There are three looping keywords in Rust: while, loop, and fox:

while

The while keyword works much like in other languages, executing the loop body as long as
the condition is true.

fn main() {
let mut x = 200;
while x >= 10 {

X =X/ 2;
}
dbg!(x);
}
6.4.1 for

The for loop iterates over ranges of values or the items in a collection:

fn main() {
for x in 1..5 {

dbg!(x);
}
for elem in [2, 4, 8, 16, 321 {
dbg! (elem);
}
}
* Under the hood for loops use a concept called ”iterators” to handle iterating over
different kinds of ranges/collections. Iterators will be discussed in more detail later.
» Note that the first for loop only iterates to 4. Show the 1. .=5 syntax for an inclusive
range.
6.4.2 loop

The loop statement just loops forever, until a break.

fn main() {
let mut i = 0;

loop {
i+=1;
dbg!(1);
if 1 > 100 {
break;
}
}

* The loop statement works like a while true loop. Use it for things like servers that
will serve connections forever.

39

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-loops
https://doc.rust-lang.org/std/keyword.for.html
https://doc.rust-lang.org/std/keyword.loop.html

6.5 break and continue

If you want to immediately start the next iteration use continue.

If you want to exit any kind of loop early, use break. With loop, this can take an optional
expression that becomes the value of the 1oop expression.

fn main() {
let mut i = 0;

loop {
i+=1;
if i > 5 {
break;
}
if 1% 2 ==0 {
continue;
}
dbg!(1);
}

}
This slide and its sub-slides should take about 4 minutes.

Note that 1oop is the only looping construct that can return a non-trivial value. This is because
it's guaranteed to only return at a break statement (unlike while and foxr loops, which can
also return when the condition fails).

6.5.1 Labels

Both continue and break can optionally take a label argument that is used to break out of
nested loops:

fn main() {
let s = [[5, 6, 71, [8, 9, 101, [21, 15, 3211;
let mut elements_searched = 0;
let target_value = 10;
'outer: for i in 0..=2 {
for j in 0..=2 {
elements_searched += 1;
if s[i][j] == target_value {
break 'outer;
}
}
}

dbg! (elements_searched) ;

* Labeled break also works on arbitrary blocks, e.g.
'label: {
break 'label;
println!("This line gets skipped");

40

https://doc.rust-lang.org/reference/expressions/loop-expr.html#continue-expressions
https://doc.rust-lang.org/reference/expressions/loop-expr.html#break-expressions

6.6 Functions

fn gcd(a: u32, b: u32) -> u32 {
if b > 0 { gcd(b, a % b) } else { a }
}

fn main() {
dbg!(gcd(143, 52));
}

This slide should take about 3 minutes.

* Declaration parameters are followed by a type (the reverse of some programming
languages), then a return type.

» The last expression in a function body (or any block) becomes the return value. Simply
omit the ; at the end of the expression. The return keyword can be used for early
return, but the “bare value” form is idiomatic at the end of a function (refactor gcd to
use a return).

* Some functions have no return value, and return the 'unit type', (). The compiler will
infer this if the return type is omitted.

* Overloading is not supported -- each function has a single implementation.

— Always takes a fixed number of parameters. Default arguments are not supported.
Macros can be used to support variadic functions.

— Always takes a single set of parameter types. These types can be generic, which
will be covered later.

6.7 Macros

Macros are expanded into Rust code during compilation, and can take a variable number of
arguments. They are distinguished by a ! at the end. The Rust standard library includes an
assortment of useful macros.

* println!(format, ..) prints a line to standard output, applying formatting de-
scribed in std: : fmt.
o format! (format, ..) works justlike println! but returns the result as a string.

» dbg! (expression) logs the value of the expression and returns it.
* todo! () marks a bit of code as not-yet-implemented. If executed, it will panic.

fn factorial(n: u32) -> u32 {
let mut product = 1;
for i in 1..=n {
product *= dbg!(i);
}
product
}

fn fizzbuzz(n: u32) -> u32 {
todo! ()
}

fn main() {
let n = 4;

41

https://doc.rust-lang.org/std/fmt/index.html

println!("{n}! = {}", factorial(n));
}

This slide should take about 2 minutes.

The takeaway from this section is that these common conveniences exist, and how to use
them. Why they are defined as macros, and what they expand to, is not especially critical.

The course does not cover defining macros, but a later section will describe use of derive
macros.

More To Explore

There are a number of other useful macros provided by the standard library. Some other
examples you can share with students if they want to know more:

* assert! and related macros can be used to add assertions to your code. These are used
heavily in writing tests.

* unreachable! is used to mark a branch of control flow that should never be hit.

* eprintln! allows you to print to stderr.

6.8 Exercise: Collatz Sequence

The Collatz Sequence is defined as follows, for an arbitrary n, greater than zero:

* If n, is 1, then the sequence terminates at n;.
* If n; is even, thenn,,, =n;/2.
* If n;is odd, thenn, , =3 *n, + 1.

For example, beginning with n, = 3:

* 3isodd,son,=3*3+1=10;
* 10iseven,sony =10/2=35;

* 5isodd,son, =3*5+1=16;
16iseven,son,; =16/2=38;
8iseven,son,=8/2=4;
4iseven,son,=4/2=2;

2 is even, song = 1; and

the sequence terminates.

Write a function to calculate the length of the Collatz sequence for a given initial n.

/// Determine the length of the collatz sequence beginning at 'n°
fn collatz_length(mut n: i32) -> u32 {

todo! ("Implement this")
}

fn main() {
println!("Length: {}", collatz_length(11)); // should be 15
}

42

https://doc.rust-lang.org/stable/std/macro.assert.html
https://doc.rust-lang.org/stable/std/macro.unreachable.html
https://doc.rust-lang.org/stable/std/macro.eprintln.html
https://en.wikipedia.org/wiki/Collatz_conjecture

6.8.1 Solution

/// Determine the length of the collatz sequence beginning at 'n°
fn collatz_length(mut n: i32) -> u32 {
let mut len = 1;
while n > 1 {
nN=1ifn %2 =0 {n/ 2 } else { 3 *n+ 1 };
len += 1;
}

len

}

fn main() {

println!("Length: {}", collatz_length(11)); // should be 15
}

* Note that the argument n is marked as mut, allowing you to change the value of n in
the function. Like variables, function arguments are immutable by default and you

must add mut if you want to modify their value. This does not affect how the function is
called or how the argument is passed in.

43

Part 11

Day 1: Afternoon

44

Chapter 7

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 45 minutes. It contains:

Segment Duration

Tuples and Arrays 35 minutes
References 55 minutes
User-Defined Types 1 hour

45

Chapter 8

Tuples and Arrays

This segment should take about 35 minutes. It contains:

Slide Duration
Arrays 5 minutes
Tuples 5 minutes
Array Iteration 3 minutes
Patterns and Destructuring 5 minutes
Exercise: Nested Arrays 15 minutes

* We have seen how primitive types work in Rust. Now it's time for you to start building
new composite types.

8.1 Arrays

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 1];
a[2] = 0;
println!("a: {a:?}");

}

This slide should take about 5 minutes.

* Arrays can also be initialized using the shorthand syntax, e.g. [@0; 1024]. This can be
useful when you want to initialize all elements to the same value, or if you have a large
array that would be hard to initialize manually.

» Avalue of the array type [T; N] holds N (a compile-time constant) elements of the same
type T. Note that the length of the array is part of its type, which means that [u8; 3]
and [u8; 4] are considered two different types. Slices, which have a size determined
at runtime, are covered later.

* Try accessing an out-of-bounds array element. The compiler is able to determine that
the index is unsafe, and will not compile the code:

46

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 11;
af[6] = 0;
println!("a: {a:?}");

» Array accesses are checked at runtime. Rust can usually optimize these checks away;
meaning if the compiler can prove the access is safe, it removes the runtime check for
better performance. They can be avoided using unsafe Rust. The optimization is so
good that it's hard to give an example of runtime checks failing. The following code will
compile but panic at runtime:

fn get_index() -> usize {
6
}

fn main() {
let mut a: [i8; 5] = [5, 4, 3, 2, 11;
al[get_index()] = 0;
println!("a: {a:?}");

* We can use literals to assign values to arrays.

* Arrays are not heap-allocated. They are regular values with a fixed size known at
compile time, meaning they go on the stack. This can be different from what students
expect if they come from a garbage-collected language, where arrays may be heap
allocated by default.

» There is no way to remove elements from an array, nor add elements to an array. The
length of an array is fixed at compile-time, and so its length cannot change at runtime.

Debug Printing

* The println! macro asks for the debug implementation with the ? format parameter:
{} gives the default output, {:?} gives the debug output. Types such as integers and
strings implement the default output, but arrays only implement the debug output. This
means that we must use debug output here.

» Adding #, eg {a:#7?}, invokes a "pretty printing” format, which can be easier to read.

8.2 Tuples

fn main() {
let t: (i8, bool) = (7, true);
dbg!(t.0);
dbg!(t.1);

}

This slide should take about 5 minutes.
* Like arrays, tuples have a fixed length.

* Tuples group together values of different types into a compound type.

47

Fields of a tuple can be accessed by the period and the index of the value, e.g. t.0, t. 1.

* The empty tuple () is referred to as the ”unit type” and signifies absence of a return
value, akin to void in other languages.

Unlike arrays, tuples cannot be used in a for loop. This is because a for loop requires
all the elements to have the same type, which may not be the case for a tuple.

 There is no way to add or remove elements from a tuple. The number of elements and
their types are fixed at compile time and cannot be changed at runtime.

8.3 Array Iteration

The for statement supports iterating over arrays (but not tuples).

fn main() {
let primes = [2, 3, 5, 7, 11, 13, 17, 1971;
for prime in primes {
for i in 2..prime {
assert_ne! (prime % i, 0);

}

}
This slide should take about 3 minutes.

This functionality uses the IntoIterator trait, but we haven't covered that yet.

The assert_ne! macroisnew here. There are also assert_eq! and assert! macros. These
are always checked, while debug-only variants like debug_assert! compile to nothing in
release builds.

8.4 Patterns and Destructuring

Rust supports using pattern matching to destructure a larger value like a tuple into its
constituent parts:

fn check_order(tuple: (i32, 132, i32)) -> bool {
let (left, middle, right) = tuple;
left < middle && middle < right

}

fn main() {
let tuple = (1, 5, 3);
println!(
"{tuple:?}: {}",
if check_order(tuple) { "ordered" } else { "unordered" }
),
}

This slide should take about 5 minutes.

» The patterns used here are ”irrefutable”, meaning that the compiler can statically verify
that the value on the right of = has the same structure as the pattern.

48

» Avariable name is an irrefutable pattern that always matches any value, hence why we
can also use let to declare a single variable.

* Rust also supports using patterns in conditionals, allowing for equality comparison
and destructuring to happen at the same time. This form of pattern matching will be
discussed in more detail later.

» Edit the examples above to show the compiler error when the pattern doesn't match
the value being matched on.

8.5 Exercise: Nested Arrays

Arrays can contain other arrays:
let array = [[1, 2, 31, [4, 5, 61, [7, 8, 911,
What is the type of this variable?

Use an array such as the above to write a function transpose that transposes a matrix (turns
rows into columns):

(11 2 3]) [1 4 7]
"transpose"||4 5 6|| "=="|2 5 8]
(17 8 9]) 3 6 9]

Copy the code below to https://play.rust-lang.org/ and implement the function. This function
only operates on 3x3 matrices.

fn transpose(matrix: [[132; 3]; 31) -> [[132; 31; 31 {
todo! ()
}

fn main() {
let matrix = [
[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 303],
1

println!("Original:");

for row in &matrix {
println!("{:?}", row);

}

let transposed = transpose(matrix);
println!("\nTransposed:");
for row in &transposed {

println!("{:?}", row);

}

49

https://play.rust-lang.org/

8.5.1 Solution

fn transpose(matrix: [[132; 3]1; 31) -> [[132; 31; 31 {

let mut result = [[0; 3]; 31;
for i in 0..3 {

for j in 0..3 {

result[j][i] = matrix[i][]j];

}
}
result

}

fn main() {
let matrix = [
[101, 102, 103], // <-- the comment makes rustfmt add a newline
[201, 202, 203],
[301, 302, 3031,
1,

println!("Original:");
for row in &matrix {
println!("{:?}", row);

}

let transposed = transpose(matrix);
println!("\nTransposed:");

for row in &transposed {

println! ("{:?}", row);

}

50

Chapter 9

References

This segment should take about 55 minutes. It contains:

Slide Duration
Shared References 10 minutes
Exclusive References 5 minutes
Slices 10 minutes
Strings 10 minutes
Reference Validity 3 minutes

Exercise: Geometry 20 minutes

9.1 Shared References

A reference provides a way to access another value without taking ownership of the value,
and is also called "borrowing”. Shared references are read-only, and the referenced data
cannot change.

fn main() {
let a = 'A';
let b = 'B';

let mut r: &char = &a;
dbg!(x);

r = &b;
dbg!(x);
}

A shared reference to a type T has type &T. A reference value is made with the & operator.
The * operator “dereferences” a reference, yielding its value.

This slide should take about 7 minutes.

» References can never be null in Rust, so null checking is not necessary.

51

» Areference is said to “borrow” the value it refers to, and this is a good model for students
not familiar with pointers: code can use the reference to access the value, but is still
”owned” by the original variable. The course will get into more detail on ownership in
day 3.

References are implemented as pointers, and a key advantage is that they can be much
smaller than the thing they point to. Students familiar with C or C++ will recognize
references as pointers. Later parts of the course will cover how Rust prevents the
memory-safety bugs that come from using raw pointers.

Explicit referencing with & is usually required. However, Rust performs automatic
referencing and dereferencing when invoking methods.

Rust will auto-dereference in some cases, in particular when invoking methods (try
r.is_ascii()). There is no need for an -> operator like in C++.

* In this example, r is mutable so that it can be reassigned (r = &b). Note that this re-
binds 1, so that it refers to something else. This is different from C++, where assignment
to a reference changes the referenced value.

A shared reference does not allow modifying the value it refers to, even if that value
was mutable. Try *r = 'X'.

Rust is tracking the lifetimes of all references to ensure they live long enough. Dangling
references cannot occur in safe Rust.

We will talk more about borrowing and preventing dangling references when we get to
ownership.

9.2 Exclusive References

Exclusive references, also known as mutable references, allow changing the value they refer
to. They have type &mut T.

fn main() {

}

let mut point = (1, 2);

let x_coord = &mut point.0;
*x_cooxrd = 20;
println!("point: {point:?}");

This slide should take about 5 minutes.

Key points:

» ”Exclusive” means that only this reference can be used to access the value. No other
references (shared or exclusive) can exist at the same time, and the referenced value
cannot be accessed while the exclusive reference exists. Try making an &point.@ or
changing point.@ while x_cooxrd is alive.

» Be sure to note the difference between let mut x_coord: &i32 and let x_cooxd:
&mut i32. The first one is a shared reference that can be bound to different values,
while the second is an exclusive reference to a mutable value.

52

9.3 Slices

A slice gives you a view into a larger collection:

fn main() {
let a: [i32; 6] = [10, 20, 30, 40, 50, 60];
println!("a: {a:?}");

let s: &[132] = &a[2..4];
println!("s: {s:?}"),

» Slices borrow data from the sliced type.
This slide should take about 7 minutes.

* We create a slice by borrowing a and specifying the starting and ending indexes in
brackets.

« If the slice starts at index 0, Rust’s range syntax allows us to drop the starting index,
meaning that &a[@..a.len()] and &a[..a.len()] are identical.

* The same is true for the last index, so &a[2..a.len()] and &a[2..] are identical.
* To easily create a slice of the full array, we can therefore use &af[. .].

* s isareference to a slice of 132s. Notice that the type of s (&[132]) no longer mentions
the array length. This allows us to perform computation on slices of different sizes.

* Slices always borrow from another object. In this example, a has to remain 'alive’ (in
scope) for at least as long as our slice.

* You can't grow” a slice once it's created:

— You can't append elements of the slice, since it doesn't own the backing buffer.

— You can't grow a slice to point to a larger section of the backing buffer. A slice does
not have information about the length of the underlying buffer and so you can't
know how large the slice can be grown.

— To get a larger slice you have to back to the original buffer and create a larger slice
from there.

9.4 Strings

We can now understand the two string types in Rust:

» &stris aslice of UTF-8 encoded bytes, similar to & [u8].
* Stringis an owned buffer of UTF-8 encoded bytes, similar to Vec<T>.

fn main() {
let s1: &str = "World";
println!("sl: {s1}");

let mut s2: String = String::from("Hello ");
println!("s2: {s2}");

s2.push_str(sl);

53

println!("s2: {s2}");

let s3: &str = &s2[2..9];
println!("s3: {s3}");
}

This slide should take about 10 minutes.

* &str introduces a string slice, which is an immutable reference to UTF-8 encoded string
data stored in a block of memory. String literals ("Hello"), are stored in the program’s
binary.

* Rust's String type is a wrapper around a vector of bytes. As with a Vec<T>, it is owned.

* As with many other types String::from() creates a string from a string literal;
String: :new() creates a new empty string, to which string data can be added using
the push() and push_str () methods.

* The format! () macro is a convenient way to generate an owned string from dynamic
values. It accepts the same format specification as println! ().

* You can borrow &str slices from String via & and optionally range selection. If you
select a byte range that is not aligned to character boundaries, the expression will panic.
The chars iterator iterates over characters and is preferred over trying to get character
boundaries right.

» For C++ programmers: think of &str as std: :string_view from C++, but the one
that always points to a valid string in memory. Rust String is a rough equivalent of
std: :string from C++ (main difference: it can only contain UTF-8 encoded bytes and
will never use a small-string optimization).

* Byte strings literals allow you to create a & [u8] value directly:

fn main() {
println!("{:?}", b"abc");
println!("{:?}", &[97, 98, 991);
}

* Raw strings allow you to create a &str value with escapes disabled: r"\n" == "\\n".
You can embed double-quotes by using an equal amount of # on either side of the quotes:

fn main() {
println! (r#"1ink"#);
println!("1link");

9.5 Reference Validity

Rust enforces a number of rules for references that make them always safe to use. One rule is
that references can never be null, making them safe to use without null checks. The other
rule we'll look at for now is that references can't outlive the data they point to.

fn main() {
let x_ref = {
let x 10;
&x

54

H
dbg! (x_ref);
}

This slide should take about 3 minutes.

 This slide gets students thinking about references as not simply being pointers, since
Rust has different rules for references than other languages.

» We'll look at the rest of Rust's borrowing rules on day 3 when we talk about Rust's
ownership system.

More to Explore

* Rust's equivalent of nullability is the Option type, which can be used to make any type
“nullable” (not just references/pointers). We haven't yet introduced enums or pattern
matching, though, so try not to go into too much detail about this here.

9.6 Exercise: Geometry

We will create a few utility functions for 3-dimensional geometry, representing a point as
[f64;3]. Itis up to you to determine the function signatures.

// Calculate the magnitude of a vector by summing the squares of its coordinates
// and taking the square root. Use the “sqrt() method to calculate the square
// root, like ‘v.sqrt() .

fn magnitude(...) -> 64 {
todo! ()
}

// Normalize a vector by calculating its magnitude and dividing all of its
// coordinates by that magnitude.

fn normalize(...) {
todo! ()
}

// Use the following "main’ to test your work.

fn main() {
println!("Magnitude of a unit vector: {}", magnitude(&[0.0, 1.0, 0.0]1));

let mut v = [1.0, 2.0, 9.0];

println!("Magnitude of {v:?}: {}", magnitude(&v));
normalize(&mut v);

println!("Magnitude of {v:?} after normalization: {}

, magnitude(&v));

55

9.6.1 Solution

/// Calculate the magnitude of the given vector.
fn magnitude(vector: &[f64; 3]) -> f64 {
let mut mag_squared = 0.0;
for coord in vector {
mag_squared += coord * cooxrd;
}
mag_squared.sqrt()

}

/// Change the magnitude of the vector to 1.0 without changing its direction.
fn normalize(vector: &mut [f64; 3]) {
let mag = magnitude(vector);
for item in vector {
*item /= mag;
}
}

fn main() {
println!("Magnitude of a unit vector: {}", magnitude(&[0.0, 1.0, ©0.0]1));

let mut v = [1.0, 2.0, 9.0];

println!("Magnitude of {v:?}: {}", magnitude(&v));

normalize(&mut v);

println!("Magnitude of {v:?} after normalization: {}", magnitude(&v));

* Note that in normalize we were able to do *item /= mag to modify each element.
This is because we're iterating using a mutable reference to an array, which causes the
for loop to give mutable references to each element.

» Itis also possible to take slice references here, e.g., fn magnitude(vector: &[f64])
-> f64. This makes the function more general, at the cost of a runtime length check.

56

Chapter 10

User-Defined Types

This segment should take about 1 hour. It contains:

Slide Duration
Named Structs 10 minutes
Tuple Structs 10 minutes
Enums 5 minutes
Type Aliases 2 minutes
Const 10 minutes
Static 5 minutes

Exercise: Elevator Events 15 minutes

10.1 Named Structs

Like C and C++, Rust has support for custom structs:

struct Person {
name: String,
age: u8,

}

fn describe(person: &Person) {
println!("{} is {} years old", person.name, person.age);
}

fn main() {
let mut peter = Person {
name: String::from("Peter"),
age: 27,
}
describe (&peter);

peter.age = 28,
describe(&peter);

57

let name = String::from("Avery");
let age = 39;

let avery = Person { name, age };
describe(&avery);

}

This slide should take about 10 minutes.
Key Points:

* Structs work like in C or C++.
— Like in C++, and unlike in C, no typedef is needed to define a type.
— Unlike in C++, there is no inheritance between structs.
» This may be a good time to let people know there are different types of structs.
— Zero-sized structs (e.g. struct Foo;) might be used when implementing a trait on
some type but don’t have any data that you want to store in the value itself.
— The next slide will introduce Tuple structs, used when the field names are not
important.
* If you already have variables with the right names, then you can create the struct using
a shorthand.
Struct fields do not support default values. Default values are specified by implementing
the Default trait which we will cover later.

More to Explore

* You can also demonstrate the struct update syntax here:
let jackie = Person { name: String::from("Jackie"), ..avery };

« It allows us to copy the majority of the fields from the old struct without having to
explicitly type it all out. It must always be the last element.

* Itis mainly used in combination with the Default trait. We will talk about struct update
syntax in more detail on the slide on the Default trait, so we don't need to talk about it
here unless students ask about it.

10.2 Tuple Structs

If the field names are unimportant, you can use a tuple struct:
struct Point(i32, i32);
fn main() {

let p = Point(17, 23);

println!("({}, {})", p.2, p.1);
}

This is often used for single-field wrappers (called newtypes):

struct PoundsOfForce(f64);
struct Newtons(f64);

fn compute_thruster_force() -> PoundsOfForce {

58

todo! ("Ask a rocket scientist at NASA")
}

fn set_thruster_force(force: Newtons) {
//

}

fn main() {
let force = compute_thruster_force();
set_thruster_force(force);

}
This slide should take about 10 minutes.

» Newtypes are a great way to encode additional information about the value in a primitive
type, for example:
— The number is measured in some units: Newtons in the example above.
— The value passed some validation when it was created, so you no longer have to
validate it again at every use: PhoneNumbexr (String) or OddNumber (u32).
* The newtype pattern is covered extensively in the Idiomatic Rust” module.
* Demonstrate how to add a 64 value to a Newtons type by accessing the single field in
the newtype.
— Rust generally avoids implicit conversions, like automatic unwrapping or using
booleans as integers.
* Operator overloading is discussed on Day 2 (Standard Library Traits).
* When a tuple struct has zero fields, the () can be omitted. The result is a zero-sized type
(ZST), of which there is only one value (the name of the type).
— This is common for types that implement some behavior but have no data (imagine
a NullReader that implements some reader behavior by always returning EOF).
» The example is a subtle reference to the Mars Climate Orbiter failure.

10.3 Enums

The enum keyword allows the creation of a type which has a few different variants:

#[derive(Debug)]
enum Direction {
Left,
Right,
}

#[derive(Debug)]

enum PlayerMove {
Pass, // Simple variant
Run(Direction), // Tuple variant
Teleport { x: u32, y: u32 }, // Struct variant

}

fn main() {
let dir = Direction::Left;
let player_move: PlayerMove = PlayerMove::Run(dir);

59

https://en.wikipedia.org/wiki/Mars_Climate_Orbiter

println!("On this turn: {player_move:?}");

}
This slide should take about 5 minutes.

Key Points:

* Enumerations allow you to collect a set of values under one type.

» Directionisa type with variants. There are two values of Direction: Direction: :Left
and Direction: :Right.

* PlayerMove is a type with three variants. In addition to the payloads, Rust will store a

discriminant so that it knows at runtime which variant is in a PlayerMove value.

This might be a good time to compare structs and enums:

— In both, you can have a simple version without fields (unit struct) or one with
different types of fields (variant payloads).

— You could even implement the different variants of an enum with separate structs
but then they wouldn’t be the same type as they would if they were all defined in
an enum.

* Rust uses minimal space to store the discriminant.

- If necessary, it stores an integer of the smallest required size

— If the allowed variant values do not cover all bit patterns, it will use invalid bit
patterns to encode the discriminant (the ”"niche optimization”). For example,
Option<&u8> stores either a pointer to an integer or NULL for the None variant.

— You can control the discriminant if needed (e.g., for compatibility with C):
#[repr(u32)]
enum Bar {

A, /] 0
B = 10000,
C, // 10001

}

fn main() {
println!("A: {}", Bar::A as u32);
println!("B: {}", Bar::B as u32);
println!("C: {}", Bar::C as u32);
}
Without repr, the discriminant type takes 2 bytes, because 10001 fits 2 bytes.

More to Explore

Rust has several optimizations it can employ to make enums take up less space.

* Null pointer optimization: For some types, Rust guarantees that size_of: :<T>() equals
size_of::<0ption<T>>().

Example code if you want to show how the bitwise representation may look like in
practice. It's important to note that the compiler provides no guarantees regarding this
representation, therefore this is totally unsafe.

use std::mem::transmute;
macro_rules! dbg_bits {

($e:expr, $bit_type:ty) => {
println!("- {}: {:#x}", stringify!($e), transmute::<_, $bit_type>(%e));

60

https://doc.rust-lang.org/std/option/#representation

3,
}

fn main() {
unsafe {
println!("bool:");
dbg_bits!(false, u8);
dbg_bits!(true, u8);

println!("Option<bool>:"});
dbg_bits!(None: :<bool>, u8);
dbg_bits!(Some(false), u8);
dbg_bits!(Some(true), u8);

println! ("Option<Option<bool>>:");
dbg_bits! (Some(Some(false)), u8);
dbg_bits!(Some(Some(true)), u8);
dbg_bits! (Some(None: :<bool>), u8);
dbg_bits!(None: :<Option<bool>>, u8);

println!("Option<&i32>:");
dbg_bits!(None: :<&1i32>, usize);
dbg_bits!(Some(&0i32), usize);

10.4 Type Aliases

A type alias creates a name for another type. The two types can be used interchangeably.

enum CarryableConcreteltem {
Left,
Right,

}

type Item = CarryableConcreteltem;

// Aliases are more useful with long, complex types:
use std::cell::RefCell;

use std::sync::{Arc, RwLock};

type PlayerInventory = RwLock<Vec<Arc<RefCell<Item>>>>;

This slide should take about 2 minutes.

* A newtype is often a better alternative since it creates a distinct type. Prefer struct
InventoryCount(usize) to type InventoryCount = usize

* C programmers will recognize this as similar to a typedef.

61

10.5 const

Constants are evaluated at compile time and their values are inlined wherever they are used:

const DIGEST_SIZE: usize = 3;
const FILL_VALUE: u8 = calculate_fill_value();

const fn calculate_fill_value() -> u8 {
if DIGEST_SIZE < 10 { 42 } else { 13 }
}

fn compute_digest(text: &str) -> [u8; DIGEST_SIZE] {
let mut digest = [FILL_VALUE; DIGEST_SIZE];
for (idx, &b) in text.as_bytes().iter().enumerate() {
digest[idx % DIGEST_SIZE] = digest[idx % DIGEST_SIZE] .wrapping_add(b);
}
digest
}

fn main() {
let digest = compute_digest("Hello");
println!("digest: {digest:?}");

}

Only functions marked const can be called at compile time to generate const values. const
functions can however be called at runtime.

This slide should take about 10 minutes.

* Mention that const behaves semantically similar to C++'s constexpr

10.6 static

Static variables will live during the whole execution of the program, and therefore will not
move:

static BANNER: &str = "Welcome to RustOS 3.14";

fn main() {
println! (" {BANNER}");
}
As noted in the Rust RFC Book, these are not inlined upon use and have an actual associated
memory location. This is useful for unsafe and embedded code, and the variable lives through

the entirety of the program execution. When a globally-scoped value does not have a reason
to need object identity, const is generally preferred.

This slide should take about 5 minutes.

* static is similar to mutable global variables in C++.
* static provides object identity: an address in memory and state as required by types
with interior mutability such as Mutex<T>.

62

https://rust-lang.github.io/rfcs/0246-const-vs-static.html
https://rust-lang.github.io/rfcs/0246-const-vs-static.html

More to Explore

Because static variables are accessible from any thread, they must be Sync. Interior
mutability is possible through a Mutex, atomic or similar.

It is common to use OncelLock in a static as a way to support initialization on first use.
OnceCell is not Sync and thus cannot be used in this context.

Thread-local data can be created with the macro std: :thread_local.

10.7 Exercise: Elevator Events

We will create a data structure to represent an event in an elevator control system. It is up to
you to define the types and functions to construct various events. Use #[derive (Debug)] to
allow the types to be formatted with {:?}.

This exercise only requires creating and populating data structures so that main runs without
errors. The next part of the course will cover getting data out of these structures.

#![allow(dead_code)]

#[derive(Debug)]
/// An event in the elevator system that the controller must react to.
enum Event {
// TODO: add required variants
}

/// A direction of travel.
#[derive(Debug)]
enum Direction {

Up,

Down,

}

/// The car has arrived on the given floor.

fn car_arrived(floor: i32) -> Event {
todo! ()

}

/// The car doors have opened.

fn car_door_opened() -> Event {
todo! ()

}

/// The car doors have closed.

fn car_door_closed() -> Event {
todo! ()

}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {
todo! ()

63

https://doc.rust-lang.org/std/sync/struct.Mutex.html

}

/// A floor button was pressed in the elevator car.

fn car_floor_button_pressed(floor: i32) -> Event {
todo! ()

}

fn main() {

println!(
"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

),

println!("The car has arrived on the ground floor: {:?}", car_arrived(Q));

println!("The car door opened: {:?}", car_door_opened());

println!(
"A passenger has pressed the 3rd floor button: {:?}",
car_floor_button_pressed(3)

),

println!("The car door closed: {:?}", car_door_closed());

println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

}
This slide and its sub-slides should take about 15 minutes.

« If students ask about #! [allow(dead_code)] at the top of the exercise, it's necessary
because the only thing we do with the Event type is print it out. Due to a nuance of how
the compiler checks for dead code this causes it to think the code is unused. They can
ignore it for the purpose of this exercise.

10.7.1 Solution
#![allow(dead_code)]

#[derive(Debug)]
/// An event in the elevator system that the controller must react to.
enum Event {

/// A button was pressed.

ButtonPressed(Button),

/// The car has arrived at the given floor.
CarArrived(Floor),

/// The car's doors have opened.
CarDoorOpened,

/// The car's doors have closed.
CarDoorClosed,

}

/// A floor is represented as an integer.
type Floor = i32;

64

/// A direction of travel.
#[derive(Debug)]
enum Direction {

Up,

Down,

}

/// A user-accessible button.

#[derive(Debug)]

enum Button {
/// A button in the elevator lobby on the given floor.
LobbyCall(Direction, Floor),

/// A floor button within the car.
CarFloor(Floor),

}

/// The car has arrived on the given floor.

fn car_arrived(floor: i32) -> Event {
Event::CarArrived(floor)

}

/// The car doors have opened.

fn car_door_opened() -> Event {
Event: :CarDoorOpened

}

/// The car doors have closed.

fn car_door_closed() -> Event {
Event: :CarDoorClosed

}

/// A directional button was pressed in an elevator lobby on the given floor.
fn lobby_call_button_pressed(floor: i32, dir: Direction) -> Event {

Event: :ButtonPressed(Button: :LobbyCall(dir, floor))
}

/// A floor button was pressed in the elevator car.
fn car_floor_button_pressed(floor: i32) -> Event {
Event::ButtonPressed(Button: :CarFloor(floor))

}

fn main() {

println!(
"A ground floor passenger has pressed the up button: {:?}",
lobby_call_button_pressed(0, Direction::Up)

)

println!("The car has arrived on the ground floor: {:?}", car_arrived(Q));

println!("The car door opened: {:?}", car_door_opened());

println!(
"A passenger has pressed the 3rd floor button: {:?}",

65

car_floor_button_pressed(3)
),
println!("The car door closed: {:?}", car_door_closed());
println!("The car has arrived on the 3rd floor: {:?}", car_arrived(3));

66

Part III

Day 2: Morning

67

Chapter 11

Welcome to Day 2

Now that we have seen a fair amount of Rust, today will focus on Rust's type system:

Pattern matching: extracting data from structures.

Methods: associating functions with types.

Traits: behaviors shared by multiple types.

Generics: parameterizing types on other types.

Standard library types and traits: a tour of Rust's rich standard library.
Closures: function pointers with data.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Welcome 3 minutes

Pattern Matching 50 minutes
Methods and Traits 45 minutes
Generics 50 minutes

68

Chapter 12

Pattern Matching

This segment should take about 50 minutes. It contains:

Slide Duration
Irrefutable Patterns 5 minutes
Matching Values 10 minutes
Destructuring Structs 4 minutes
Destructuring Enums 4 minutes
Let Control Flow 10 minutes

Exercise: Expression Evaluation 15 minutes

12.1 Irrefutable Patterns

In day 1 we briefly saw how patterns can be used to destructure compound values. Let's
review that and talk about a few other things patterns can express:

fn takes_tuple(tuple: (char, i32, bool)) {
let a = tuple.0;
let b = tuple.l;
let c = tuple.2;

let (a, b, c)

tuple;

let (_, b, c) tuple;

let (.., c) = tuple;
}

fn main() {
takes_tuple(('a', 777, true));
}

69

This slide should take about 5 minutes.

« All of the demonstrated patterns are irrefutable, meaning that they will always match
the value on the right hand side.

» Patterns are type-specific, including irrefutable patterns. Try adding or removing an
element to the tuple and look at the resulting compiler errors.

 Variable names are patterns that always match and bind the matched value into a new
variable with that name.

» _ is a pattern that always matches any value, discarding the matched value.

» .. allows you to ignore multiple values at once.

More to Explore

* You can also demonstrate more advanced usages of . ., such as ignoring the middle
elements of a tuple.

fn takes_tuple(tuple: (char, i32, bool, u8)) {

let (first, .., last) = tuple;
}
+ All of these patterns work with arrays as well:
fn takes_array(array: [u8; 51) {
let [first, .., last] = array;

}

12.2 Matching Values

The match keyword lets you match a value against one or more patterns. The patterns can be
simple values, similarly to switch in C and C++, but they can also be used to express more
complex conditions:

#lrustfmt: :skip]

fn main() {
let input = 'x';
match input {

q' => println!("Quitting"),
at | 's' | 'w' | 'd! => println!("Moving around"),
'Q'..="'9" => println!("Number input"),

key if key.is_lowercase() =>

println!("Lowercase: {key}"),

=> println!("Something else"),

}

A variable in the pattern (key in this example) will create a binding that can be used within
the match arm. We will learn more about this on the next slide.

A match guard causes the arm to match only if the condition is true. If the condition is false
the match will continue checking later cases.

This slide should take about 10 minutes.

70

Key Points:
* You might point out how some specific characters are being used when in a pattern

- | asanorx

— .. matches any number of items

— 1. .=5represents an inclusive range
— _is awild card

* Match guards as a separate syntax feature are important and necessary when we wish
to concisely express more complex ideas than patterns alone would allow.

* Match guards are different from if expressions after the =>. An if expression is
evaluated after the match arm is selected. Failing the if condition inside of that block
won't result in other arms of the original match expression being considered. In the
following example, the wildcard pattern _ => is never even attempted.

#lrustfmt: :skip]
fn main() {
let input = 'a’;
match input {
key if key.is_uppercase() => println! ("Uppercase"),
key => if input == 'q' { println!("Quitting") },
=> println!("Bug: this is never printed"),

* The condition defined in the guard applies to every expression in a pattern with an |.
* Note that you can't use an existing variable as the condition in a match arm, as it will
instead be interpreted as a variable name pattern, which creates a new variable that
will shadow the existing one. For example:
let expected = 5;
match 123 {
expected => println!("Expected value is 5, actual is {expected}"),
_ => println!("Value was something else"),
}
Here we're trying to match on the number 123, where we want the first case to check
if the value is 5. The naive expectation is that the first case won't match because the
value isn't 5, but instead this is interpreted as a variable pattern which always matches,
meaning the first branch will always be taken. If a constant is used instead this will
then work as expected.

More To Explore

» Another piece of pattern syntax you can show students is the @ syntax which binds a
part of a pattern to a variable. For example:

let opt = Some(123);
match opt {
outer @ Some(inner) => {
println!("outer: {outer:?}, inner: {inner}");

}

71

None => {}

}

In this example inner has the value 123 which it pulled from the Option via de-
structuring, outer captures the entire Some (inner) expression, so it contains the full
Option: :Some(123). This is rarely used but can be useful in more complex patterns.

12.3 Structs

Like tuples, structs can also be destructured by matching:

struct Foo {
x: (u32, u32),
y: u32,

}

#lrustfmt: :skip]
fn main() {
let foo = Foo { x: (1, 2), y: 3 };
match foo {
Foo { y: 2, x: i} => println!("y
Foo { x: (1, b), y } => println!("x.
Foo { vy, ..} => println!("y

2, x = {i:?}"),
=1, b ={b}, y={y}"),
{y}, other fields were ignored"),

o 1

}
This slide should take about 4 minutes.

* Change the literal values in foo to match with the other patterns.
* Add a new field to Foo and make changes to the pattern as needed.

More to Explore

* Trymatch &foo and check the type of captures. The pattern syntax remains the same,
but the captures become shared references. This is match ergonomics and is often
useful with match self when implementing methods on an enum.

— The same effect occurs with match &mut foo: the captures become exclusive
references.

» The distinction between a capture and a constant expression can be hard to spot. Try
changing the 2 in the first arm to a variable, and see that it subtly doesn't work. Change
it to a const and see it working again.

12.4 Enums

Like tuples, enums can also be destructured by matching:

Patterns can also be used to bind variables to parts of your values. This is how you inspect
the structure of your types. Let us start with a simple enum type:

enum Result {
Ok (i32),

72

https://rust-lang.github.io/rfcs/2005-match-ergonomics.html

Exrr(String),
}

fn divide_in_two(n: i32) -> Result {
ifn%2==20{
Result::0k(n / 2)
} else {
Result: :Exr(format!("cannot divide {n} into two equal parts"))
}
}

fn main() {
let n = 100;
match divide_in_two(n) {
Result: :0k(half) => println!("{n} divided in two is {half}"),
Result::Exrr(msg) => println!("sorry, an error happened: {msg}"),

}

Here we have used the arms to destructure the Result value. In the first arm, half is bound
to the value inside the Ok variant. In the second arm, msg is bound to the error message.

This slide should take about 4 minutes.

» The if/else expression is returning an enum that is later unpacked with a match.

* You can try adding a third variant to the enum definition and displaying the errors
when running the code. Point out the places where your code is now inexhaustive and
how the compiler tries to give you hints.

* The values in the enum variants can only be accessed after being pattern matched.

* Demonstrate what happens when the search is inexhaustive. Note the advantage the
Rust compiler provides by confirming when all cases are handled.

* Demonstrate the syntax for a struct-style variant by adding one to the enum definition
and the match. Point out how this is syntactically similar to matching on a struct.

12.5 Let Control Flow

Rust has a few control flow constructs that differ from other languages. They are used for
pattern matching:

+ if let expressions
* while let expressions
* let else expressions

12.5.1 if let Expressions

Theif let expression lets you execute different code depending on whether a value matches
a pattern:

use std::time::Duration;

fn sleep_for(secs: f32) {
let result = Duration::try_from_secs_f32(secs);

73

https://doc.rust-lang.org/reference/expressions/if-expr.html#if-let-expressions

if let Ok(duration) = result {
std::thread: :sleep(duration);
println!("slept for {duration:?}");

}

fn main() {
sleep_for(-10.0);
sleep_for(0.8);

e Unlikematch,if let doesnothave to cover all branches. This can make it more concise
than match.

* A common usage is handling Some values when working with Option.

* Unlike match, if let does not support guard clauses for pattern matching.

* With an else clause, this can be used as an expression.

12.5.2 while let Statements

Likewithif let,thereisawhile let variant thatrepeatedly tests a value against a pattern:

fn main() {
let mut name = String::from("Comprehensive Rust #&");
while let Some(c) = name.pop() {
dbg!(c);
¥

// (There are more efficient ways to reverse a string!)

}

Here String: : pop returns Some (c¢) until the string is empty, after which it will return None.
The while let lets us keep iterating through all items.

» Point out that the while let loop will keep going as long as the value matches the
pattern.

* You could rewrite the while let loop as an infinite loop with an if statement that
breaks when there is no value to unwrap for name .pop (). The while let provides
syntactic sugar for the above scenario.

 This form cannot be used as an expression, because it may have no value if the condition
is false.

12.5.3 1let else Statements

For the common case of matching a pattern and returning from the function, use let else.
The ”else” case must diverge (return, break, or panic - anything but falling off the end of
the block).

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let s = if let Some(s) = maybe_string {
S
} else {
return Err(String::from("got None"));
b

74

https://doc.rust-lang.org/reference/expressions/loop-expr.html#predicate-pattern-loops
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.pop
https://doc.rust-lang.org/rust-by-example/flow_control/let_else.html

let first_byte_char = if let Some(first) = s.chars().next() {
first

} else {
return Err(String::from("got empty string"));

i

let digit = if let Some(digit) = first_byte_char.to_digit(16) {
digit

} else {
return Err(String::from("not a hex digit"));

i

Ok (digit)
}

fn main() {
println!("result: {:?}", hex_or_die_trying(Some(String: :from("foo"))));
}

The rewritten version is:

fn hex_or_die_trying(maybe_string: Option<String>) -> Result<u32, String> {
let Some(s) = maybe_string else {
return Err(String::from("got None"));

Hi

let Some(first_byte_char) = s.chars().next() else {
return Err(String::from("got empty string"));
}i

let Some(digit) = first_byte_char.to_digit(16) else {
return Err(String::from("not a hex digit"));
}

Ok (digit)

More to Explore

* This early return-based control flow is common in Rust error handling code, where you
try to get a value out of a Result, returning an error if the Result was Exx.

* If students ask, you can also demonstrate how real error handling code would be written
with ?.

12.6 Exercise: Expression Evaluation

Let's write a simple recursive evaluator for arithmetic expressions.

An example of a small arithmetic expression could be 10 + 20, which evaluates to 30. We
can represent the expression as a tree:

75

A bigger and more complex expression would be (1@ * 9) + ((3 - 4) * 5), which eval-
uates to 85. We represent this as a much bigger tree:

________________ | + | oo -
| e |
Vv Vv
e N EEELY el I IEES
|- | |- |
Vv Vv Vv Vv
| 10 | | 9 | e Ea B B | 5 |
___________ | - | -
\ \
| 3 | | 4 |

In code, we will represent the tree with two types

/// An operation to perform on two subexpressions.
#[derive(Debug)]
enum Operation {

Add,

Sub,

Mul,

Div,

}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),
}

The Box type here is a smart pointer, and will be covered in detail later in the course. An
expression can be ”boxed” with Box : : new as seen in the tests. To evaluate a boxed expression,
use the deref operator (*) to “unbox” it: eval (*boxed_expr).

Copy and paste the code into the Rust playground, and begin implementing eval. The final
product should pass the tests. It may be helpful to use todo! () and get the tests to pass

76

one-by-one. You can also skip a test temporarily with #[ignore]:

#[test]
#[ignore]
fn test_value() { .. }

/// An operation to perform on two subexpressions.

#[derive(Debug)]
enum Operation {
Add,
Sub,
Mul,
Div,
}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {

/// An operation on two subexpressions.

Op { op: Operation, left: Box<Expression>, right:

/// A literal value
Value(i64),
}

fn eval(e: Expression) -> i64 {
todo! ()
}

#[test]
fn test_value() {
assert_eq! (eval(Expression::Value(19)), 19);

}

#[test]
fn test_sum() {
assert_eq! (
eval (Expression::0p {
op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),
}).,
30
),
}

#[test]
fn test_recursion() {
let terml = Expression::0p {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),

77

Box<Expression> },

}s
let term2 = Expression::0p {
op: Operation::Mul,
left: Box::new(Expression::0p {
op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),
}).,
right: Box::new(Expression::Value(5)),
}
assert_eq! (
eval (Expression::0p {
op: Operation::Add,
left: Box::new(terml),
right: Box::new(term2),
)
85
),
}

#[test]
fn test_zeros() {
assert_eq!(
eval (Expression::0p {
op: Operation::Add,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
).
0
),
assert_eq! (
eval (Expression::0p {
op: Operation::Mul,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

0
),
assert_eq! (
eval (Expression::0p {
op: Operation::Sub,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))

#[test]
fn test_div() {
assert_eq! (

78

eval (Expression::0p {
op: Operation::Div,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(2)),
)
5

12.6.1 Solution

/// An operation to perform on two subexpressions.

#[derive(Debug)]
enum Operation {
Add,
Sub,
Mul,
Div,
}

/// An expression, in tree form.
#[derive(Debug)]
enum Expression {
/// An operation on two subexpressions.
Op { op: Operation, left: Box<Expression>, right: Box<Expression> },

/// A literal value
Value(i64),
}

fn eval(e: Expression) -> i64 {
match e {
Expression::0p { op, left, right } => {

let left = eval(*left);

let right = eval(*right);

match op {
Operation::Add => left + right,
Operation::Sub => left - right,
Operation::Mul => left * right,
Operation::Div => left / right,

}
}
Expression: :Value(v) => v,
}
}
#[test]
fn test_value() {
assert_eq! (eval(Expression::Value(19)), 19);
}

79

#[test]
fn test_sum() {
assert_eq! (
eval (Expression::0p {
op: Operation::Add,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(20)),
).
30
)
}

#[test]
fn test_recursion() {
let terml = Expression::0p {
op: Operation::Mul,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(9)),
}
let term2 = Expression::0p {
op: Operation::Mul,
left: Box::new(Expression::0p {
op: Operation::Sub,
left: Box::new(Expression::Value(3)),
right: Box::new(Expression::Value(4)),
)
right: Box::new(Expression::Value(5)),
i
assert_eq! (
eval (Expression::0p {
op: Operation::Add,
left: Box::new(terml),
right: Box::new(term2),
).
85
)
}

#[test]
fn test_zeros() {
assert_eq! (
eval (Expression::0p {
op: Operation::Add,
left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
}).,
0
),
assert_eq!(
eval (Expression::0p {
op: Operation::Mul,

80

left: Box::new(Expression::Value(0)),
right: Box::new(Expression::Value(0))
}).,
0
),
assert_eq! (
eval (Expression::0p {
op: Operation::Sub,
left: Box::new(Expression::Value(0
right: Box::new(Expression: :Value(

),
0))
1),
)
),
}

#[test]
fn test_div() {
assert_eq!(
eval (Expression::0p {
op: Operation::Div,
left: Box::new(Expression::Value(10)),
right: Box::new(Expression::Value(2)),
).
5

81

Chapter 13

Methods and Traits

This segment should take about 45 minutes. It contains:

Slide Duration
Methods 10 minutes
Traits 15 minutes
Deriving 3 minutes

Exercise: Generic Logger 15 minutes

13.1 Methods

Rust allows you to associate functions with your new types. You do this with an imp1 block:

#[derive(Debug)]
struct CarRace {
name: String,
laps: Vec<i32>,
}

impl CarRace {
// No receiver, a static method
fn new(name: &str) -> Self {
Self { name: String::from(name), laps: Vec::new() }

}

// Exclusive borrowed read-write access to self

fn add_lap(&mut self, lap: i32) {
self.laps.push(lap);

}

// Shared and read-only borrowed access to self

fn print_laps(&self) {
println!("Recorded {} laps for {}:", self.laps.len(), self.name);
for (idx, lap) in self.laps.iter().enumerate() {

82

println!("Lap {idx}: {lap} sec");

fn finish(self) {
let total: i32 = self.laps.iter().sum();
println!("Race {} is finished, total lap time: {}", self.name, total);

}

fn main() {
let mut race = CarRace::new("Monaco Grand Prix");
race.add_lap(70);
race.add_lap(68);
race.print_laps();
race.add_lap(71);
race.print_laps();
race.finish();

}

The self arguments specify the ”receiver” - the object the method acts on. There are several
common receivers for a method:

» &self: borrows the object from the caller using a shared and immutable reference. The
object can be used again afterwards.

* &mut self: borrows the object from the caller using a unique and mutable reference.
The object can be used again afterwards.

» self: takes ownership of the object and moves it away from the caller. The method
becomes the owner of the object. The object will be dropped (deallocated) when the
method returns, unless its ownership is explicitly transmitted. Complete ownership
does not automatically mean mutability.

* mut self: same as above, but the method can mutate the object.

* No receiver: this becomes a static method on the struct. Typically used to create con-
structors that are called new by convention.

This slide should take about 8 minutes.
Key Points:

¢ It can be helpful to introduce methods by comparing them to functions.

— Methods are called on an instance of a type (such as a struct or enum), the first
parameter represents the instance as self.

— Developers may choose to use methods to take advantage of method receiver
syntax and to help keep them more organized. By using methods we can keep all
the implementation code in one predictable place.

— Note that methods can also be called like associated functions by explicitly passing
the receiver in, e.g. CarRace: :add_lap(&mut race, 20).

* Point out the use of the keyword self, a method receiver.

— Show that it is an abbreviated term for self: Self and perhaps show how the
struct name could also be used.

— Explain that Self is a type alias for the type the imp1 block is in and can be used

83

elsewhere in the block.

— Note how self is used like other structs and dot notation can be used to refer to
individual fields.

— This might be a good time to demonstrate how the &self differs from self by
trying to run finish twice.

— Beyond variants on self, there are also special wrapper types allowed to be receiver
types, such as Box<Self>.

13.2 Traits

Rust lets you abstract over types with traits. They're similar to interfaces:

trait Pet {
/// Return a sentence from this pet.
fn talk(&self) -> String;

/// Print a string to the terminal greeting this pet.
fn greet(&self);
}

This slide and its sub-slides should take about 15 minutes.

* A trait defines a number of methods that types must have in order to implement the
trait.

* In the ”Generics” segment, next, we will see how to build functionality that is generic
over all types implementing a trait.

13.2.1 Implementing Traits

trait Pet {
fn talk(&self) -> String;

fn greet(&self) {
println!("Oh you're a cutie! What's your name? {}", self.talk());
}
}

struct Dog {
name: String,
age: 18,

}

impl Pet for Dog {
fn talk(&self) -> String {
format! ("Woof, my name is {}!", self.name)
}
}

fn main() {
let fido = Dog { name: String::from("Fido"), age: 5 };
dbg! (fido.talk());

84

https://doc.rust-lang.org/reference/special-types-and-traits.html

fido.greet();

* To implement Trait for Type, you use an impl Trait for Type { .. } block

* Unlike Go interfaces, just having matching methods is not enough: a Cat type with a
talk() method would not automatically satisfy Pet unless it is in an impl Pet block.

* Traits may provide default implementations of some methods. Default implementations
can rely on all the methods of the trait. In this case, greet is provided, and relies on
talk.

» Multiple imp1 blocks are allowed for a given type. This includes both inherent impl
blocks and trait impl blocks. Likewise multiple traits can be implemented for a given
type (and often types implement many traits!). imp1 blocks can even be spread across
multiple modules/files.

13.2.2 Supertraits

A trait can require that types implementing it also implement other traits, called supertraits.
Here, any type implementing Pet must implement Animal.

trait Animal {
fn leg_count(&self) -> u32;
}

trait Pet: Animal {
fn name(&self) -> String;
}

struct Dog(String);

impl Animal for Dog {
fn leg_count(&self) -> u32 {
4
}
}

impl Pet for Dog {
fn name(&self) -> String {
self.®.clone()
}
}

fn main() {

let puppy = Dog(String::from("Rex"));

println! ("{} has {} legs", puppy.name(), puppy.leg_count());
}

This is sometimes called ”trait inheritance” but students should not expect this to behave like
0O inheritance. It just specifies an additional requirement on implementations of a trait.

85

13.2.3 Associated Types

Associated types are placeholder types that are supplied by the trait implementation.

#[derive(Debug)]

struct Meters(i32);
#[derive(Debug)]

struct MetersSquared(i32);

trait Multiply {

type Output;

fn multiply(&self, other: &Self) -> Self::Output;
}

impl Multiply for Meters {
type Output = MetersSquared;
fn multiply(&self, other: &Self) -> Self::Output {
MetersSquared(self.? * other.0)
}
}

fn main() {
println! ("{:?}", Meters(10).multiply(&Meters(20)));
}

» Associated types are sometimes also called "output types”. The key observation is that
the implementer, not the caller, chooses this type.

* Many standard library traits have associated types, including arithmetic operators and
Iterator

13.3 Deriving

Supported traits can be automatically implemented for your custom types, as follows:

#[derive(Debug, Clone, Default)]
struct Player {

name: String,

strength: u8,

hit_points: u8,
}

fn main() {
let pl = Player::default(); // Default trait adds “default® constructor.
let mut p2 = pl.clone(); // Clone trait adds "clone’ method.
p2.name = String::from("EldurScrollz");
// Debug trait adds support for printing with "{:?}°
println! ("{pl:?} vs. {p2:?}");
}

This slide should take about 3 minutes.

* Derivation is implemented with macros, and many crates provide useful derive macros

86

to add useful functionality. For example, serde can derive serialization support for a
struct using #[derive(Serialize)].

* Derivation is usually provided for traits that have a common boilerplate implementation
that is correct for most cases. For example, demonstrate how a manual Clone impl can
be repetitive compared to deriving the trait:

impl Clone for Player {
fn clone(&self) -> Self {
Player {
name: self.name.clone(),
strength: self.strength.clone(),
hit_points: self.hit_points.clone(),

}

Not all of the .clone()s in the above are necessary in this case, but this demonstrates
the generally boilerplate-y pattern that manual impls would follow, which should help
make the use of derive clear to students.

13.4 Exercise: Logger Trait

Let's design a simple logging utility, using a trait Logger with a 1og method. Code that might
log its progress can then take an &impl Logger. In testing, this might put messages in the
test logfile, while in a production build it would send messages to a log server.

However, the StderrLogger given below logs all messages, regardless of verbosity. Your task
is to write a VerbosityFilter type that will ignore messages above a maximum verbosity.

This is a common pattern: a struct wrapping a trait implementation and implementing that
same trait, adding behavior in the process. In the "Generics” segment, we will see how to
make the wrapper generic over the wrapped type.

trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrlLogger;

impl Logger for StderrlLogger {
fn log(&self, verbosity: u8, message: &str) {
eprintln! ("verbosity={verbosity}: {message}");
}
}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter {

max_verbosity: u8,

inner: Stderrlogger,

87

// TODO: Implement the "Logger trait for "VerbosityFilter'.

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrlLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

13.4.1 Solution

trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrlLogger;

impl Logger for StderrlLogger {
fn log(&self, verbosity: u8, message: &str) {
eprintln! ("verbosity={verbosity}: {message}");
}
}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter {

max_verbosity: u8,

inner: Stderrlogger,

}

impl Logger for VerbosityFilter {
fn log(&self, verbosity: u8, message: &str) {
if verbosity <= self.max_verbosity ({
self.inner.log(verbosity, message);

}
}

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrlLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

88

Chapter 14

Generics

This segment should take about 50 minutes. It contains:

Slide Duration
Generic Functions 5 minutes
Trait Bounds 10 minutes
Generic Data Types 10 minutes
Generic Traits 5 minutes
impl Trait 5 minutes
dyn Trait 5 minutes

Exercise: Generic min 10 minutes

14.1 Generic Functions

Rust supports generics, which lets you abstract algorithms or data structures (such as sorting
or a binary tree) over the types used or stored.

fn pick<T>(cond: bool, left: T, right: T) -> T {
if cond { left } else { right }
}

fn main() {
println!("picked a number: {:?}", pick(true, 222, 333));
println!("picked a string: {:?}", pick(false, 'L', 'R'));
}

This slide should take about 5 minutes.

* It can be helpful to show the monomorphized versions of pick, either before talking
about the generic pick in order to show how generics can reduce code duplication, or
after talking about generics to show how monomorphization works.

fn pick_i32(cond: bool, left: i32, right: i32) -> i32 {
if cond { left } else { right }
}

89

fn pick_char(cond: bool, left: char, right: char) -> char {
if cond { left } else { right }
}

Rust infers a type for T based on the types of the arguments and return value.

* In this example we only use the primitive types 132 and char for T, but we can use any
type here, including user-defined types:

struct Foo {
val: u8,

}

pick(false, Foo { val: 7 }, Foo { val: 99 });

This is similar to C++ templates, but Rust partially compiles the generic function im-
mediately, so that function must be valid for all types matching the constraints. For
example, try modifying pick to return left + right if cond is false. Even if only the
pick instantiation with integers is used, Rust still considers it invalid. C++ would let
you do this.

Generic code is turned into non-generic code based on the call sites. This is a zero-cost
abstraction: you get exactly the same result as if you had hand-coded the data structures
without the abstraction.

14.2 Trait Bounds

When working with generics, you often want to require the types to implement some trait, so
that you can call this trait's methods.

You can do this with T: Trait:
fn duplicate<T: Clone>(a: T) -> (T, T) {

(a.clone(), a.clone())

struct NotCloneable;

fn main() {

let foo = String::from("foo");
let pair = duplicate(foo);
println! ("{pair:?}");

This slide should take about 8 minutes.

* Try making a NotCloneable and passing it to duplicate.
* When multiple traits are necessary, use + to join them.
* Show a where clause, students will encounter it when reading code.

fn duplicate<T>(a: T) -> (T, T)
where
T: Clone,

90

(a.clone(), a.clone())

— It declutters the function signature if you have many parameters.
— It has additional features making it more powerful.
* If someone asks, the extra feature is that the type on the left of ”:” can be
arbitrary, like Option<T>.

* Note that Rust does not (yet) support specialization. For example, given the original
duplicate,itis invalid to add a specialized duplicate(a: u32).

14.3 Generic Data Types

You can use generics to abstract over the concrete field type. Returning to the exercise for the
previous segment:

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrlLogger;

impl Logger for StderrlLogger {
fn log(&self, verbosity: u8, message: &str) {
eprintln! ("verbosity={verbosity}: {message}");
}
}

/// Only log messages up to the given verbosity level.
struct VerbosityFilter<L> {

max_verbosity: u8,

inner: L,

}

impl<L: Logger> Logger for VerbosityFilter<L> {
fn log(&self, verbosity: u8, message: &str) {
if verbosity <= self.max_verbosity ({
self.inner.log(verbosity, message);

}
}

fn main() {
let logger = VerbosityFilter { max_verbosity: 3, inner: StderrlLogger };
logger.log(5, "FYI");
logger.log(2, "Uhoh");

}

This slide should take about 10 minutes.

91

* Q: Why is L specified twice in impl<L: Logger> .. VerbosityFilter<L>? Isn't that
redundant?
— This is because it is a generic implementation section for generic type. They are
independently generic.
— It means these methods are defined for any L.
- Hlspossﬂﬂetovvnielmpl VerbosityFilter<StderrLogger> { .. }.
* VerbosityFilter is still generic and you can use VerbosityFilter<f64>,
but methods in this block will only be available for VerbosityFilter<StderrLogger>
* Note that we don't put a trait bound on the VerbosityFilter type itself. You can put
bounds there as well, but generally in Rust we only put the trait bounds on the impl
blocks.

14.4 Generic Traits

Traits can also be generic, just like types and functions. A trait's parameters get concrete
types when it is used. For example the From<T> trait is used to define type conversions:

pub trait From<T>: Sized {
fn from(value: T) -> Self;
}

#[derive(Debug)]
struct Foo(String);

impl From<u32> for Foo {
fn from(from: u32) -> Foo {
Foo(format! ("Converted from integer: {from}"))
}
}

impl From<bool> for Foo {
fn from(from: bool) -> Foo {
Foo(format! ("Converted from bool: {from}"))
}
}

fn main() {
let from_int = Foo::from(123);
let from_bool = Foo::from(true);
dbg! (from_int);
dbg! (from_bool);

}

This slide should take about 5 minutes.

» The From trait will be covered later in the course, but its definition in the std docs is
simple, and copied here for reference.

» Implementations of the trait do not need to cover all possible type parameters. Here,
Foo::from("hello") would not compile because there is no From<&str> implemen-
tation for Foo.

92

https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.From.html

* Generic traits take types as “input”, while associated types are a kind of “output” type. A
trait can have multiple implementations for different input types.

 In fact, Rust requires that at most one implementation of a trait match for any type
T. Unlike some other languages, Rust has no heuristic for choosing the “most specific”
match. There is work on adding this support, called specialization.

14.5 impl Trait

Similar to trait bounds, an impl Trait syntax can be used in function arguments and return
values:

fn add_42_millions(x: impl Into<i32>) -> i32 {
X.into() + 42_000_000
}

fn pair_of(x: u32) -> impl std::fmt::Debug {
(x + 1, x - 1)
}

fn main() {
let many = add_42_millions(42_1i8);
dbg! (many) ;
let many_more = add_42_millions(10_000_000);
dbg! (many_more) ;
let debuggable = pair_of(27);
dbg! (debuggable) ;
}

This slide should take about 5 minutes.

impl Trait allows you to work with types that you cannot name. The meaning of impl
Trait is a bit different in the different positions.

* For a parameter, impl Trait is like an anonymous generic parameter with a trait
bound.

* For a return type, it means that the return type is some concrete type that implements
the trait, without naming the type. This can be useful when you don't want to expose
the concrete type in a public API

Inference is hard in return position. A function returning impl Foo picks the concrete
type it returns, without writing it out in the source. A function returning a generic
type like collect() -> Bcanreturn any type satisfying B, and the caller may need
to choose one, such as with let x: Vec<_> = foo.collect () or with the turbofish,
foo.collect: :<Vec<_>>().

What is the type of debuggable? Try let debuggable: () = .. to see what the error
message shows.

93

https://rust-lang.github.io/rfcs/1210-impl-specialization.html

14.6 dyn Trait

In addition to using traits for static dispatch via generics, Rust also supports using them for
type-erased, dynamic dispatch via trait objects:

struct Dog {
name: String,
age: 18,

}

struct Cat {
lives: 1i8,

}

trait Pet {
fn talk(&self) -> String;
}

impl Pet for Dog {
fn talk(&self) -> String {
format! ("Woof, my name is {}!", self.name)
}
}

impl Pet for Cat {
fn talk(&self) -> String {
String: :from("Miau!")
}
}

// Uses generics and static dispatch.
fn generic(pet: &impl Pet) {

println!("Hello, who are you? {}", pet.talk());
}

// Uses type-erasure and dynamic dispatch.
fn dynamic(pet: &dyn Pet) {

println!("Hello, who are you? {}", pet.talk());
}

fn main() {
let cat
let dog

Cat { lives: 9 };
Dog { name: String::from("Fido"), age: 5 };

generic(&cat);
generic(&dog) ;

dynamic(&cat);
dynamic (&dog) ;
}

This slide should take about 5 minutes.

94

* Generics, including impl Trait, use monomorphization to create a specialized instance
of the function for each different type that the generic is instantiated with. This means
that calling a trait method from within a generic function still uses static dispatch, as
the compiler has full type information and can resolve that type's trait implementation
to use.

* Whenusingdyn Trait,itinstead uses dynamic dispatch through a virtual method table
(vtable). This means that there's a single version of fn dynamic that is used regardless
of what type of Pet is passed in.

* When using dyn Trait, the trait object needs to be behind some kind of indirection. In
this case it's a reference, though smart pointer types like Box can also be used (this will
be demonstrated on day 3).

* At runtime, a &dyn Pet is represented as a “fat pointer”, i.e. a pair of two pointers:
One pointer points to the concrete object that implements Pet, and the other points to
the vtable for the trait implementation for that type. When calling the talk method
on &dyn Pet the compiler looks up the function pointer for talk in the vtable and
then invokes the function, passing the pointer to the Dog or Cat into that function. The
compiler doesn't need to know the concrete type of the Pet in order to do this.

* Adyn Traitisconsidered to be “type-erased”, because we no longer have compile-time
knowledge of what the concrete type is.

14.7 Exercise: Generic min
In this short exercise, you will implement a generic min function that determines the mini-
mum of two values, using the Ord trait.

use std::cmp::0rdering;
// TODO: implement the "min’ function used in the tests.

#[test]

fn integers() {
assert_eq!(min(0, 10), 0);
assert_eq!(min(500, 123), 123);

}
#[test]
fn chars() {
assert_eq!(min('a', 'z"), 'a');
assert_eq!(min('7', '1"), '1');
}
#[test]

fn strings() {
assert_eq! (min("hello", "goodbye"), "goodbye");
assert_eq! (min("bat", "armadillo"), "armadillo");

}
This slide and its sub-slides should take about 10 minutes.

95

https://en.wikipedia.org/wiki/Virtual_method_table
https://doc.rust-lang.org/stable/std/cmp/trait.Ord.html

* Show students the Ord trait and Ordering enum.

14.7.1 Solution

use std::cmp::0rdering;

fn min<T: Oxd>(1: T, r: T) -> T {
match 1.cmp(&r) {
Ordering::Less | Ordering::Equal => 1,
Ordering: :Greater => r,

}

#[test]
fn integers() {
assert_eq!(min(0, 10), 0);
assert_eq!(min(500, 123), 123);
}

#[test]
fn chars() {

assert_eq!(min('a', 'z'), 'a');
assert_eq!(min('7', '1"), '1");
}
#[test]

fn strings() {
assert_eq!(min("hello", "goodbye"), "goodbye");
assert_eq! (min("bat", "armadillo"), "armadillo");

96

https://doc.rust-lang.org/stable/std/cmp/trait.Ord.html
https://doc.rust-lang.org/stable/std/cmp/enum.Ordering.html

Part IV

Day 2: Afternoon

97

Chapter 15

Welcome Back

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Closures 30 minutes
Standard Library Types 1 hour
Standard Library Traits 1 hour

98

Chapter 16

Closures

This segment should take about 30 minutes. It contains:

Slide Duration
Closure Syntax 3 minutes
Capturing 5 minutes
Closure Traits 10 minutes

Exercise: Log Filter 10 minutes

16.1 Closure Syntax

Closures are created with vertical bars: | .. |

fn main() {

let double_it =

| n* 2;
dbg! (double_it (50

nj
).,
let add_1f32 = |x: 32| -> f32 { x + 1.0 };

dbg! (add_1f32(50.));
}

This slide should take about 3 minutes.

* The arguments go between the | .. |. The body can be surrounded by {

is a single expression these can be omitted.

}, butif it

* Argument types are optional, and are inferred if not given. The return type is also

optional, but can only be written if using { .. } around the body.

* The examples can both be written as mere nested functions instead -- they do not capture

any variables from their lexical environment. We will see captures next.

99

More to Explore

» The ability to store functions in variables doesn't just apply to closures, regular functions
can be put in variables and then invoked the same way that closures can: Example in
the playground.

— The linked example also demonstrates that closures that don't capture anything
can also coerce to a regular function pointer.

16.2 Capturing

A closure can capture variables from the environment where it was defined.

fn main() {
let max_value = 5;
let clamp = |v| {
if v > max_value { max_value } else { v }
i

dbg! (clamp(1));

dbg! (clamp(3));

dbg! (clamp(5));

dbg! (clamp(7));

dbg! (clamp(10));
}

This slide should take about 5 minutes.

* By default, a closure captures values by reference. Here max_value is captured by
clamp, but still available to main for printing. Try making max_value mutable, changing
it, and printing the clamped values again. Why doesn't this work?

 If a closure mutates values, it will capture them by mutable reference. Try adding
max_value += 1to clamp.

* You can force a closure to move values instead of referencing them with the move
keyword. This can help with lifetimes, for example if the closure must outlive the
captured values (more on lifetimes later).

This looks like move |v| ... Try adding this keyword and see if main can still access
max_value after defining clamp.

* By default, closures will capture each variable from an outer scope by the least demand-
ing form of access they can (by shared reference if possible, then exclusive reference,
then by move). The move keyword forces capture by value.

16.3 Closure traits

Closures or lambda expressions have types that cannot be named. However, they implement
special Fn, FnMut, and FnOnce traits:

The special types fn(..) -> T refer to function pointers - either the address of a function,
or a closure that captures nothing.

100

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=817cbeeefc49f3d0d180a3d6d54c8bda
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=817cbeeefc49f3d0d180a3d6d54c8bda
https://doc.rust-lang.org/std/ops/trait.Fn.html
https://doc.rust-lang.org/std/ops/trait.FnMut.html
https://doc.rust-lang.org/std/ops/trait.FnOnce.html

fn apply_and_log(

func: impl FnOnce(&'static str) -> String,

func_name: &'static str,

input: &'static str,
) {

println!("Calling {func_name}({input}): {}", func(input))
}

fn main() {
let suffix = "-itis";
let add_suffix = |x| format!("{x}{suffix}");
apply_and_log(&add_suffix, "add_suffix", "senior");
apply_and_log(&add_suffix, "add_suffix", "appendix");

let mut v = Vec: :new();

let mut accumulate = |x| {
v.push(x);
v.join("/")
b
apply_and_log(&mut accumulate, "accumulate", "red");
apply_and_log(&mut accumulate, "accumulate", "green");
apply_and_log(&mut accumulate, "accumulate", "blue");
let take_and_reverse = |prefix| {
let mut acc = String::from(prefix);
acc.push_str(&v.into_iter().rev().collect::<Vec<_>>().join("/"));
acc
}
apply_and_log(take_and_reverse, "take_and_reverse", "reversed: ");

}
This slide should take about 10 minutes.

An Fn (e.g. add_suffix) neither consumes nor mutates captured values. It can be called
needing only a shared reference to the closure, which means the closure can be executed
repeatedly and even concurrently.

An FnMut (e.g. accumulate) might mutate captured values. The closure object is accessed
via exclusive reference, so it can be called repeatedly but not concurrently.

If you have an FnOnce (e.g. take_and_reverse), you may only call it once. Doing so con-
sumes the closure and any values captured by move.

FnMut is a subtype of FnOnce. Fnis a subtype of FnMut and FnOnce. Le. you can use an FnMut
wherever an FnOnce is called for, and you can use an Fn wherever an FnMut or FnOnce is
called for.

When you define a function that takes a closure, you should take FnOnce if you can (i.e. you
call it once), or FnMut else, and last Fn. This allows the most flexibility for the caller.

In contrast, when you have a closure, the most flexible you can have is Fn (which can be
passed to a consumer of any of the three closure traits), then FnMut, and lastly FnOnce.

The compiler also infers Copy (e.g. for add_suffix) and Clone (e.g. take_and_reverse),
depending on what the closure captures. Function pointers (references to fnitems) implement

101

Copy and Fn.

16.4 Exercise: Log Filter

Building on the generic logger from this morning, implement a Filter that uses a closure to
filter log messages, sending those that pass the filtering predicate to an inner logger.

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrlLogger;

impl Logger for StderrlLogger {
fn log(&self, verbosity: u8, message: &str) {
eprintln! ("verbosity={verbosity}: {message}");
}
}

// TODO: Define and implement "Filter'.

fn main() {
let logger = Filter::new(StderrLogger, |_verbosity, msg| msg.contains("yikes"));
logger.log(5, "FYI");
logger.log(l, "yikes, something went wrong");
logger.log(2, "uhoh");

16.4.1 Solution

pub trait Logger {
/// Log a message at the given verbosity level.
fn log(&self, verbosity: u8, message: &str);

}

struct StderrLogger;

impl Logger for StderrlLogger {
fn log(&self, verbosity: u8, message: &str) {
eprintln! ("verbosity={verbosity}: {message}");
}
}

/// Only log messages matching a filtering predicate.
struct Filter<L, P> {

inner: L,

predicate: P,

102

impl<L, P> Filter<L, P>

where
L: Logger,
P: Fn(u8, &str) -> bool,
{
fn new(inner: L, predicate: P) -> Self {
Self { inner, predicate }
}
}
impl<L, P> Logger for Filter<L, P>
where
L: Logger,
P: Fn(u8, &str) -> bool,
{
fn log(&self, verbosity: u8, message: &str) {
if (self.predicate)(verbosity, message) {
self.inner.log(verbosity, message);
}
}
}

fn main() {
let logger = Filter::new(StderrLogger, |_verbosity, msg| msg.contains("yikes"));
logger.log(5, "FYI");
logger.log(l, "yikes, something went wrong");
logger.log(2, "uhoh");

* Note thatthe P: Fn(u8, &str) -> bool bound on the first Filter impl block isn't
strictly necessary, but it helps with type inference when calling new. Demonstrate
removing it and showing how the compiler now needs type annotations for the closure
passed to new.

103

Chapter 17

Standard Library Types

This segment should take about 1 hour. It contains:

Slide Duration
Standard Library 3 minutes
Documentation 5 minutes
Option 10 minutes
Result 5 minutes
String 5 minutes
Vec 5 minutes
HashMap 5 minutes

Exercise: Counter 20 minutes

For each of the slides in this section, spend some time reviewing the documentation pages,
highlighting some of the more common methods.

17.1 Standard Library

Rust comes with a standard library that helps establish a set of common types used by Rust
libraries and programs. This way, two libraries can work together smoothly because they
both use the same String type.

In fact, Rust contains several layers of the Standard Library: core, alloc and std.

» core includes the most basic types and functions that don't depend on 1libc, allocator
or even the presence of an operating system.

* alloc includes types that require a global heap allocator, such as Vec, Box and Arc.

* Embedded Rust applications often only use core, and sometimes alloc.

17.2 Documentation

Rust comes with extensive documentation. For example:

104

« All of the details about loops.
* Primitive types like u8.
» Standard library types like Option or BinaryHeap.

Use rustup doc --std or https://std.rs to view the documentation.
In fact, you can document your own code:

/// Determine whether the first argument is divisible by the second argument.
/17
/// If the second argument is zero, the result is false.
fn is_divisible_by(lhs: u32, rhs: u32) -> bool {

if rhs == 0 {

return false;

}

lhs % rhs == 0
}

The contents are treated as Markdown. All published Rust library crates are automatically
documented at docs . rs using the rustdoc tool. It is idiomatic to document all public items in
an API using this pattern.

To document an item from inside the item (such as inside a module), use //! or /*! .. */,
called ”inner doc comments”:

//1 This module contains functionality relating to divisibility of integers.
This slide should take about 5 minutes.

* Show students the generated docs for the rand crate at https://docs.rs/rand.

17.3 Option

We have already seen some use of Option<T>. It stores either a value of type T or nothing.
For example, String: : find returns an Option<usize>.

fn main() {
let name = "Lowe #[E Léopard Gepardi";
let mut position: Option<usize> = name.find('é');
dbg! (position);
assert_eq! (position.unwrap(), 14);
position = name.find('Z");
dbg! (position);
assert_eq! (position.expect("Character not found"), 0);

}
This slide should take about 10 minutes.
* Optionis widely used, not just in the standard library.

* unwrap will return the value in an Option, or panic. expect is similar but takes an
error message.

— You can panic on None, but you can't “accidentally” forget to check for None.
— It's common to unwrap/expect all over the place when hacking something together,
but production code typically handles None in a nicer fashion.

105

https://doc.rust-lang.org/stable/reference/expressions/loop-expr.html
https://doc.rust-lang.org/stable/std/primitive.u8.html
https://doc.rust-lang.org/stable/std/option/enum.Option.html
https://doc.rust-lang.org/stable/std/collections/struct.BinaryHeap.html
https://std.rs
https://docs.rs
https://doc.rust-lang.org/rustdoc/what-is-rustdoc.html
https://docs.rs/rand
https://doc.rust-lang.org/stable/std/string/struct.String.html#method.find

* The ”niche optimization” means that Option<T> often has the same size in memory as
T, if there is some representation that is not a valid value of T. For example, a reference
cannot be NULL, so Option<&T> automatically uses NULL to represent the None variant,
and thus can be stored in the same memory as &T.

17.4 Result

Result is similar to Option, but indicates the success or failure of an operation, each with a
different enum variant. It is generic: Result<T, E> where T is used in the Ok variant and E
appears in the Err variant.

use std::fs::File;
use std::io::Read;

fn main() {
let file: Result<File, std::io::Error> = File::open("diary.txt");
match file {
Ok(mut file) => {
let mut contents = String::new();
if let Ok(bytes) = file.read_to_string(&mut contents) {
println!("Dear diary: {contents} ({bytes} bytes)");
} else {
println!("Could not read file content");
}
}
Exrr(err) => {
println!("The diary could not be opened: {err}");
}

}

This slide should take about 5 minutes.

» As with Option, the successful value sits inside of Result, forcing the developer to
explicitly extract it. This encourages error checking. In the case where an error should

never happen, unwrap () or expect () can be called, and this is a signal of the developer
intent too.

* Result documentation is a recommended read. Not during the course, but it is worth
mentioning. It contains a lot of convenience methods and functions that help functional-
style programming.

* Result is the standard type to implement error handling as we will see on Day 4.

17.5 String

Stringis a growable UTF-8 encoded string:

fn main() {
let mut s1 = String::new();
sl.push_str("Hello");
println!("sl: len = {}, capacity = {}", sl.len(), sl.capacity());

106

https://doc.rust-lang.org/std/string/struct.String.html

let mut s2 = String::with_capacity(sl.len() + 1);
s2.push_str(&sl);

s2.push('!");

println!("s2: len = {}, capacity = {}", s2.len(), s2.capacity());

let s3 = String::from("E3");
println!("s3: len = {}, number of chars = {}", s3.len(), s3.chars().count());

}

String implements Deref<Target = str>, which means that you can call all str methods
ona String.

This slide should take about 5 minutes.

* String: :new returns a new empty string, use String: :with_capacity when you
know how much data you want to push to the string.

* String: :lenreturns the size of the String in bytes (which can be different from its
length in characters).

* String: :chars returns an iterator over the actual characters. Note that a char can be
different from what a human will consider a “character” due to grapheme clusters.

* When people refer to strings they could either be talking about &str or String.

* When a type implements Deref<Target = T>, the compiler will let you transparently
call methods from T.

— We haven't discussed the Deref trait yet, so at this point this mostly explains the
structure of the sidebar in the documentation.

— Stringimplements Deref<Target = str> which transparently gives it access to
str's methods.

— Write and compare let s3 = sl.deref(); and let s3 = &*s1;.

* String is implemented as a wrapper around a vector of bytes, many of the opera-
tions you see supported on vectors are also supported on String, but with some extra
guarantees.

* Compare the different ways to index a String:

— To a character by using s3.chars() .nth(i).unwrap() where i is in-bound, out-
of-bounds.

— To a substring by using s3[@. .4], where that slice is on character boundaries or
not.

* Many types can be converted to a string with the to_string method. This trait is
automatically implemented for all types that implement Display, so anything that can
be formatted can also be converted to a string.

17.6 Vec

Vec is the standard resizable heap-allocated buffer:

fn main() {
let mut vl = Vec: :new();
vl.push(42);
println!("vl: len = {}, capacity = {}", vl.len(), vl.capacity());

let mut v2 = Vec::with_capacity(vl.len() + 1);

v2.extend(vl.iter());
v2.push(9999);

107

https://doc.rust-lang.org/std/string/struct.String.html#deref-methods-str
https://docs.rs/unicode-segmentation/latest/unicode_segmentation/struct.Graphemes.html
https://doc.rust-lang.org/std/string/trait.ToString.html#tymethod.to_string
https://doc.rust-lang.org/std/vec/struct.Vec.html

println!("v2: len = {}, capacity = {}", v2.1len(), v2.capacity());

// Canonical macro to initialize a vector with elements.
let mut v3 = vec![0, @, 1, 2, 3, 4]1;

// Retain only the even elements.
v3.retain(|x| x % 2 == 0);
println! ("{v3:?}");

// Remove consecutive duplicates.
v3.dedup();
println! ("{v3:?}");

}

Vec implements Deref<Target = [T]>, which means that you can call slice methods on a
Vec.

This slide should take about 5 minutes.

* Vec is a type of collection, along with String and HashMap. The data it contains is
stored on the heap. This means the amount of data doesn't need to be known at compile
time. It can grow or shrink at runtime.

» Notice how Vec<T> is a generic type too, but you don't have to specify T explicitly. As
always with Rust type inference, the T was established during the first push call.

* vec![...] isacanonical macro to use instead of Vec: :new() and it supports adding
initial elements to the vector.

* To index the vector you use [1, but they will panic if out of bounds. Alternatively, using
get will return an Option. The pop function will remove the last element.

17.7 HashMap

Standard hash map with protection against HashDoS attacks:

use std::collections: :HashMap;

fn main() {
let mut page_counts = HashMap: :new();
page_counts.insert("Adventures of Huckleberry Finn", 207);
page_counts.insert("Grimms' Fairy Tales", 751);
page_counts.insert("Pride and Prejudice", 303);

if !page_counts.contains_key("Les Misérables") {
println!(
"We know about {} books, but not Les Misérables.",
page_counts.len()
),
}

for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
match page_counts.get(book) {
Some(count) => println!("{book}: {count} pages"),
None => println!("{book} is unknown."),

108

https://doc.rust-lang.org/std/vec/struct.Vec.html#deref-methods-%5BT%5D

}

// Use the .entry() method to insert a value if nothing is found.

for book in ["Pride and Prejudice", "Alice's Adventure in Wonderland"] {
let page_count: &mut 132 = page_counts.entry(book).or_insert(0);
*page_count += 1;

}

dbg! (page_counts);
}

This slide should take about 5 minutes.
* HashMap is not defined in the prelude and needs to be brought into scope.

» Try the following lines of code. The first line will see if a book is in the hashmap and if
not return an alternative value. The second line will insert the alternative value in the
hashmap if the book is not found.

let pcl = page_counts
.get("Harry Potter and the Sorcerer's Stone")
.unwrap_or(&336);
let pc2 = page_counts
.entry("The Hunger Games")
.or_insert(374);

* Unlike vec!, there is unfortunately no standard hashmap! macro.

— Although, since Rust 1.56, HashMap implements From<[(K, V); NI]>, which al-
lows us to easily initialize a hash map from a literal array:

let page_counts = HashMap: :from([
("Harry Potter and the Sorcerer's Stone".to_string(), 336),
("The Hunger Games".to_string(), 374),

1)
* Alternatively HashMap can be built from any Iterator that yields key-value tuples.

* This type has several ?method-specific” return types, such as std: : collections: :hash_map: :Keys.
These types often appear in searches of the Rust docs. Show students the docs for this
type, and the helpful link back to the keys method.

17.8 Exercise: Counter

In this exercise you will take a very simple data structure and make it generic. It uses a
std::collections: :HashMap to keep track of what values have been seen and how many
times each one has appeared.

The initial version of Countexr is hardcoded to only work for u32 values. Make the struct and
its methods generic over the type of value being tracked, that way Counter can track any
type of value.

If you finish early, try using the entry method to halve the number of hash lookups required
to implement the count method.

109

https://doc.rust-lang.org/std/collections/hash_map/struct.HashMap.html#impl-From%3C%5B(K,+V);+N%5D%3E-for-HashMap%3CK,+V,+RandomState%3E
https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html
https://doc.rust-lang.org/stable/std/collections/struct.HashMap.html#method.entry

use std::collections: :HashMap;

/// Counter counts the number of times each value of type T has been

struct Counter {
values: HashMap<u32, u64>,
}

impl Counter {
/// Create a new Counter.
fn new() -> Self {
Counter {
values: HashMap: :new(),
}
}

/// Count an occurrence of the given value.
fn count(&mut self, value: u32) {
if self.values.contains_key(&value) {
*self.values.get_mut(&value) .unwrap() += 1;
} else {
self.values.insert(value, 1);
}
}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: u32) -> ub4d {
self.values.get(&value).copied().unwrap_or_default()
}
}

fn main() {
let mut ctr = Counter::new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {

println!("saw {} values equal to {}", ctr.times_seen(i), 1i);

}

let mut strctr = Counter::new();
strctr.count("apple");

strctr.count("orange");

strctr.count("apple");

println!("got {} apples", strctr.times_seen("apple"));

110

seen.

17.8.1 Solution

use std::collections: :HashMap;
use std::hash::Hash;

/// Counter counts the number of times each value of type T has been seen.
struct Counter<T> {

values: HashMap<T, u64>,
}

impl<T: Eq + Hash> Counter<T> {
/// Create a new Counter.
fn new() -> Self {
Counter { values: HashMap::new() }

}

/// Count an occurrence of the given value.
fn count(&mut self, value: T) {
*self.values.entry(value).or_default() += 1;

}

/// Return the number of times the given value has been seen.
fn times_seen(&self, value: T) -> u6b4d {
self.values.get(&value).copied().unwrap_or_default()
}
}

fn main() {
let mut ctr = Counter: :new();
ctr.count(13);
ctr.count(14);
ctr.count(16);
ctr.count(14);
ctr.count(14);
ctr.count(11);

for i in 10..20 {
println!("saw {} values equal to {}", ctr.times_seen(i), 1i);

}

let mut strctr = Counter::new();
strctr.count("apple");

strctr.count("orange");

strctr.count("apple");

println!("got {} apples", strctr.times_seen("apple"));

111

Chapter 18

Standard Library Traits

This segment should take about 1 hour. It contains:

Slide Duration
Comparisons 5 minutes
Operators 5 minutes
From and Into 5 minutes
Casting 5 minutes
Read and Write 5 minutes
Default, struct update syntax 5 minutes
Exercise: ROT13 30 minutes

As with the standard library types, spend time reviewing the documentation for each trait.

This section is long. Take a break midway through.

18.1 Comparisons

These traits support comparisons between values. All traits can be derived for types contain-
ing fields that implement these traits.

PartialEq and Eq

PartialEqis a partial equivalence relation, with required method eq and provided method
ne. The == and != operators will call these methods.

struct Key ({
id: u32,
metadata: Option<String>,
}
impl PartialEq for Key {
fn eq(&self, other: &Self) -> bool {
self.id == other.id

112

}

Eqis a full equivalence relation (reflexive, symmetric, and transitive) and implies PartialEg.
Functions that require full equivalence will use Eq as a trait bound.

PartialOrd and Oxd

PartialOxd defines a partial ordering, with a partial_cmp method. It is used to implement
the <, <=, >=, and > operators.

use std::cmp::0rdering;
#[derive(Eq, PartialkEq)]
struct Citation {
author: String,
year: u32,
}
impl PartialOrd for Citation {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
match self.author.partial_cmp(&other.author) {
Some (Ordering: :Equal) => self.year.partial_cmp(&other.year),
author_ord => author_ord,

}

Ord is a total ordering, with cmp returning Ordering.
This slide should take about 5 minutes.

* PartialEq can be implemented between different types, but Eq cannot, because it is
reflexive:

struct Key {
id: u32,
metadata: Option<String>,
}
impl PartialEq<u32> for Key {
fn eq(&self, other: &u32) -> bool {
self.id == *other
}
}

* In practice, it's common to derive these traits, but uncommon to implement them.

* When comparing references in Rust, it will compare the value of the things pointed
to, it will NOT compare the references themselves. That means that references to two
different things can compare as equal if the values pointed to are the same:

fn main() {
let a = "Hello";
let b = String::from("Hello");
assert_eq!(a, b);

113

18.2 Operators

Operator overloading is implemented via traits in std: : ops:

#[derive(Debug, Copy, Clone)]
struct Point {

x: 132,

y: 132,
}

impl std::ops::Add for Point {
type Output = Self;

fn add(self, other: Self) -> Self {
Self { x: self.x + other.x, y: self.y + other.y }
}
}

fn main() {

let pl = Point { x: 10, y: 20 };

let p2 = Point { x: 100, y: 200 };

println! ("{pl:?} + {p2:?} = {:?}", pl + p2);
}

This slide should take about 5 minutes.
Discussion points:

* You could implement Add for &Point. In which situations is that useful?
— Answer: Add:add consumes self. If type T for which you are overloading the
operator is not Copy, you should consider overloading the operator for &T as well.
This avoids unnecessary cloning on the call site.
* Why is Output an associated type? Could it be made a type parameter of the method?
— Short answer: Function type parameters are controlled by the caller;, but associated
types (like Output) are controlled by the implementer of a trait.
* You could implement Add for two different types, e.g. impl Add<(i32, i32)> for
Point would add a tuple to a Point.

The Not trait (! operator) is notable because it does not convert the argument to bool like the
same operator in C-family languages; instead, for integer types it flips each bit of the number,
which, arithmetically, is equivalent to subtracting the argument from -1: !5 == -6.

18.3 Fromand Into

Types implement From and Into to facilitate type conversions. Unlike as, these traits corre-
spond to lossless, infallible conversions.

fn main() {
let s = String::from("hello");
let addr = std::net::Ipv4Addr::from([127, @, 0, 11);
let one = i16::from(true);
let bigger = i32::from(123_116);

114

https://doc.rust-lang.org/std/ops/index.html
https://doc.rust-lang.org/std/convert/trait.From.html
https://doc.rust-lang.org/std/convert/trait.Into.html

println!("{s}, {addr}, {one}, {bigger}");
}

Into is automatically implemented when From is implemented:

fn main() {
let s: String = "hello".into();
let addr: std::net::Ipv4Addr = [127, 0, @, 1].into();
let one: il6 = true.into();
let bigger: i32 = 123_il16.into();
println!("{s}, {addr}, {one}, {bigger}");
}

This slide should take about 5 minutes.

* That's why it is common to only implement From, as your type will get Into implemen-
tation too.

* When declaring a function argument input type like “anything that can be converted
into a String”, the rule is opposite, you should use Into. Your function will accept
types that implement From and those that only implement Into.

18.4 Casting

Rust has no implicit type conversions, but does support explicit casts with as. These generally
follow C semantics where those are defined.

fn main() {
let value: i64 = 1000;
println!("as ul6: {}", value as ul6);
println!("as i16: {}", value as 116);
println!("as u8: {}", value as u8);

}

The results of as are always defined in Rust and consistent across platforms. This might not
match your intuition for changing sign or casting to a smaller type -- check the docs, and
comment for clarity.

Casting with as is a relatively sharp tool that is easy to use incorrectly, and can be a source
of subtle bugs as future maintenance work changes the types that are used or the ranges
of values in types. Casts are best used only when the intent is to indicate unconditional
truncation (e.g. selecting the bottom 32 bits of a u64 with as u32, regardless of what was in
the high bits).

For infallible casts (e.g. u32 to u64), prefer using From or Into over as to confirm that the
cast is in fact infallible. For fallible casts, TryFrom and TryInto are available when you want
to handle casts that fit differently from those that don't.

This slide should take about 5 minutes.
Consider taking a break after this slide.

as is similar to a C++ static cast. Use of as in cases where data might be lost is generally
discouraged, or at least deserves an explanatory comment.

This is common in casting integers to usize for use as an index.

115

https://doc.rust-lang.org/std/convert/trait.Into.html
https://doc.rust-lang.org/std/convert/trait.From.html

18.5 Read and Write

Using Read and BufRead, you can abstract over u8 sources:
use std::io::{BufRead, BufReader, Read, Result};

fn count_lines<R: Read>(reader: R) -> usize {
let buf_reader = BufReader: :new(reader);
buf_reader.lines().count()

}

fn main() -> Result<()> {
let slice: &[u8] = b"foo\nbar\nbaz\n";
println!("lines in slice: {}", count_lines(slice));

let file = std::fs::File::open(std::env::current_exe()?)?;
println!("lines in file: {}", count_lines(file));
0k(())

}

Similarly, Write lets you abstract over u8 sinks:

use std::io::{Result, Write};

fn log<W: Write>(writer: &mut W, msg: &str) -> Result<()> {
writer.write_all(msg.as_bytes())?;
writer.write_all("\n".as_bytes())

}

fn main() -> Result<()> {
let mut buffer = Vec::new();
log(&mut buffer, "Hello")?;
log(&mut buffer, "World")?;
println!("Logged: {buffer:?}");
ok(())

18.6 The Default Trait

The Default trait produces a default value for a type.

#[derive(Debug, Default)]
struct Derived {

X: u32,

y: String,

z: Implemented,
}
#[derive(Debug)]

struct Implemented(String);

impl Default for Implemented {

116

https://doc.rust-lang.org/std/io/trait.Read.html
https://doc.rust-lang.org/std/io/trait.BufRead.html
https://doc.rust-lang.org/std/io/trait.Write.html
https://doc.rust-lang.org/std/default/trait.Default.html

fn default() -> Self {
Self("John Smith".into())
}
}

fn main() {
let default_struct = Derived: :default();
dbg! (default_struct);

let almost_default_struct =
Derived { y: "Y is set!".into(), ..Derived::default() };
dbg! (almost_default_struct);

let nothing: Option<Derived> = None;
dbg! (nothing.unwrap_or_default());
}

This slide should take about 5 minutes.

¢ It can be implemented directly or it can be derived via #[derive (Default)].

* A derived implementation will produce a value where all fields are set to their default
values.

— This means all types in the struct must implement Default too.

 Standard Rust types often implement Default with reasonable values (e.g. @, " ", etc).

» The partial struct initialization works nicely with default.

» The Rust standard library is aware that types can implement Default and provides
convenience methods that use it.

* The .. syntaxis called struct update syntax.

18.7 Exercise: ROT13

In this example, you will implement the classic ’ROT13” cipher. Copy this code to the play-
ground, and implement the missing bits. Only rotate ASCII alphabetic characters, to ensure
the result is still valid UTF-8.

use std::io::Read;

struct RotDecoder<R: Read> {
input: R,
rot: u8,

}

// Implement the "Read’ trait for "RotDecoder .

#[cfg(test)]
mod test {
use super::*;

#[test]

fn joke() {
let mut rot =

117

https://doc.rust-lang.org/book/ch05-01-defining-structs.html#creating-instances-from-other-instances-with-struct-update-syntax
https://en.wikipedia.org/wiki/ROT13

RotDecoder { input: "Gb trg gb gur bgure fvqgr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq! (&result, "To get to the other side!");

}

#[test]
fn binary() {
let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> { input: input.as_slice(), rot: 13 };
let mut buf = [0u8; 256];
assert_eq!(rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {
if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i].is_ascii_alphabetic());

}

What happens if you chain two RotDecoder instances together, each rotating by 13 charac-
ters?

18.7.1 Solution

use std::io::Read;

struct RotDecoder<R: Read> {
input: R,
rot: u8,

}

impl<R: Read> Read for RotDecoder<R> {
fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
let size = self.input.read(buf)?;
for b in &mut buf[..size] {
if b.is_ascii_alphabetic() {
let base = if b.is_ascii_uppercase() { 'A' } else { 'a' } as u8;
*b = (*b - base + self.rot) % 26 + base;
}
}

Ok(size)
}
#[cfg(test)]
mod test {
use super::*;

#[test]

118

fn joke() {
let mut rot =
RotDecoder { input: "Gb trg gb gur bgure fvqr!".as_bytes(), rot: 13 };
let mut result = String::new();
rot.read_to_string(&mut result).unwrap();
assert_eq! (&result, "To get to the other side!");

}

#[test]
fn binary() {
let input: Vec<u8> = (0..=255u8).collect();
let mut rot = RotDecoder::<&[u8]> { input: input.as_slice(), rot: 13 };
let mut buf = [Qu8; 2567;
assert_eq! (rot.read(&mut buf).unwrap(), 256);
for i in 0..=255 {
if input[i] != buf[i] {
assert!(input[i].is_ascii_alphabetic());
assert!(buf[i] .is_ascii_alphabetic());

119

PartV

Day 3: Morning

120

Chapter 19

Welcome to Day 3

Today, we will cover:

* Memory management, lifetimes, and the borrow checker: how Rust ensures memory
safety.
* Smart pointers: standard library pointer types.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 20 minutes. It contains:

Segment Duration
Welcome 3 minutes
Memory Management 1 hour
Smart Pointers 55 minutes

121

Chapter 20

Memory Management

This segment should take about 1 hour. It contains:

Slide Duration
Review of Program Memory 5 minutes
Approaches to Memory Management 10 minutes
Ownership 5 minutes
Move Semantics 5 minutes
Clone 2 minutes
Copy Types 5 minutes
Drop 10 minutes
Exercise: Builder Type 20 minutes

20.1 Review of Program Memory

Programs allocate memory in two ways:
« Stack: Continuous area of memory for local variables.

— Values have fixed sizes known at compile time.
— Extremely fast: just move a stack pointer.

— Easy to manage: follows function calls.

— Great memory locality.

* Heap: Storage of values outside of function calls.

— Values have dynamic sizes determined at runtime.
— Slightly slower than the stack: some bookkeeping needed.
— No guarantee of memory locality.

Example

Creating a String puts fixed-sized metadata on the stack and dynamically sized data, the
actual string, on the heap:

122

fn main() {
let s1 = String: :from("Hello");

}
Stack
—————————————— Heap
sl :
T [T + :
| capacity | 5 | S L L L L LT
| ptr | otk W e |11 o | o
| len [5 S
F o a o [+ :

This slide should take about 5 minutes.

* Mention that a String is backed by a Vec, so it has a capacity and length and can grow
if mutable via reallocation on the heap.

* If students ask about it, you can mention that the underlying memory is heap allocated

using the System Allocator and custom allocators can be implemented using the Allocator
API

More to Explore

We can inspect the memory layout with unsafe Rust. However, you should point out that
this is rightfully unsafe!

fn main() {

let mut s1 =

sl.push(' ');

sl.push_str("world");

// DON'T DO THIS AT HOME! For educational purposes only.

// String provides no guarantees about its layout, so this could lead to

// undefined behavior.

unsafe {
let (capacity, ptr, len): (usize, usize, usize) = std::mem::transmute(sl);
println!("capacity = {capacity}, ptr = {ptr:#x}, len = {len}");

String::from("Hello");

20.2 Approaches to Memory Management

Traditionally, languages have fallen into two broad categories:

 Full control via manual memory management: C, C++, Pascal, ...
— Programmer decides when to allocate or free heap memory.
— Programmer must determine whether a pointer still points to valid memory.
— Studies show, programmers make mistakes.
* Full safety via automatic memory management at runtime: Java, Python, Go, Haskell, ...

123

https://doc.rust-lang.org/std/alloc/struct.System.html
https://doc.rust-lang.org/std/alloc/index.html
https://doc.rust-lang.org/std/alloc/index.html

— A runtime system ensures that memory is not freed until it can no longer be refer-
enced.
— Typically implemented with reference counting or garbage collection.

Rust offers a new mix:

Full control and safety via compile time enforcement of correct memory manage-
ment.

It does this with an explicit ownership concept.
This slide should take about 10 minutes.
This slide is intended to help students coming from other languages to put Rust in context.

* C must manage heap manually with malloc and free. Common errors include for-
getting to call free, calling it multiple times for the same pointer, or dereferencing a
pointer after the memory it points to has been freed.

* C++ has tools like smart pointers (unique_ptr, shared_ptr) that take advantage of lan-
guage guarantees about calling destructors to ensure memory is freed when a function
returns. It is still quite easy to misuse these tools and create similar bugs to C.

* Java, Go, and Python rely on the garbage collector to identify memory that is no longer
reachable and discard it. This guarantees that any pointer can be dereferenced, elimi-
nating use-after-free and other classes of bugs. But, GC has a runtime cost and is difficult
to tune properly.

Rust's ownership and borrowing model can, in many cases, get the performance of C, with
alloc and free operations precisely where they are required -- zero-cost. It also provides tools
similar to C++'s smart pointers. When required, other options such as reference counting
are available, and there are even crates available to support runtime garbage collection (not
covered in this class).

20.3 Ownership

All variable bindings have a scope where they are valid and it is an error to use a variable
outside its scope:

struct Point(i32, i32);

fn main() {

{
let p = Point(3, 4);
dbg! (p.0);

}

dbg!(p.1);

}

We say that the variable owns the value. Every Rust value has precisely one owner at all
times.

At the end of the scope, the variable is dropped and the data is freed. A destructor can run
here to free up resources.

This slide should take about 5 minutes.

124

Students familiar with garbage collection implementations will know that a garbage collector
starts with a set of ”roots” to find all reachable memory. Rust's ”single owner” principle is a
similar idea.

20.4 Move Semantics

An assignment will transfer ownership between variables:

fn main() {
let s1 = String::from("Hello!");
let s2 = s1;
dbg!(s2);

* The assignment of s1 to s2 transfers ownership.
* When s1 goes out of scope, nothing happens: it does not own anything.
* When s2 goes out of scope, the string data is freed.

Before move to s2:

Stack Heap
sl
Fom e oo Fommm o - + T
| ptr | O---t---t-----t->| H | e |1 |1 |o |! |
| len | 6 | : T e LT Tr ey
| capacity | 6 | :
Fom oo Fom oo + :
After move to s2:
Stack Heap
sl "(inaccessible)"
R e === + . . +----t+----t----Ft----F----F+----+
| ptr | O---t#---t--d-—t->] H | e |1 |1 |o | ! |
| len [6 | | R e e It T
| capacity | 6 | |
E T ——— Fomm oo - + |
| - - - e - e oo oo oo oo
s2 |
Fom e oo Fommm oo + |
| ptr | 0mmebmr
| len | 6 |
| capacity | 6 |
Fomm e - Fommm oo +

125

When you pass a value to a function, the value is assigned to the function parameter. This
transfers ownership:

fn say_hello(name: String) {
println!("Hello {name}")
}

fn main() {
let name = String::from("Alice");
say_hello(name);

}

This slide should take about 5 minutes.

* Mention that this is the opposite of the defaults in C++, which copies by value unless
you use std: :move (and the move constructor is defined!).

* It is only the ownership that moves. Whether any machine code is generated to ma-
nipulate the data itself is a matter of optimization, and such copies are aggressively
optimized away.

» Simple values (such as integers) can be marked Copy (see later slides).

* In Rust, clones are explicit (by using clone).

In the say_hello example:

» With the first call to say_hello, main gives up ownership of name. Afterwards, name
cannot be used anymore within main.

» The heap memory allocated for name will be freed at the end of the say_hello function.

* main can retain ownership if it passes name as a reference (&name) and if say_hello
accepts a reference as a parameter.

* Alternatively, main can pass a clone of name in the first call (name.clone()).

* Rust makes it harder than C++ to inadvertently create copies by making move semantics
the default, and by forcing programmers to make clones explicit.

More to Explore

Defensive Copies in Modern C++

Modern C++ solves this differently:

std::string s1 = "Cpp";
std::string s2 = s1;

* The heap data from s1 is duplicated and s2 gets its own independent copy.
* When s1 and s2 go out of scope, they each free their own memory.

Before copy-assignment:
Stack Heap

126

T tommem - + : : R Lt
| ptr | Oomceteetetere>| C o p | p |
| len | 3 : : R e L T, :
| capacity | 3 | : :
R et R + : .

After copy-assignment:

Stack Heap
sl : :
R o= + . . -ttt ----+ .
| ptr | 0---F---dt--d-d-> C | p [p | :
| len | 3 : L A LT s :
| capacity | 3] :
Fom - - - == + .
s2 :
R et R + I a s S o .
| ptr | O---t---to-o- > C |p |p | :
| len | 3 : R LT T :
| capacity | 3 | : :
R Fo------ + . .

Key points:

* C++ has made a slightly different choice than Rust. Because = copies data, the string
data has to be cloned. Otherwise we would get a double-free when either string goes
out of scope.

» C++ also has std: :move, which is used to indicate when a value may be moved from. If
the example had beens2 = std: :move(sl),noheap allocation would take place. After
the move, s1 would be in a valid but unspecified state. Unlike Rust, the programmer is
allowed to keep using s1.

* Unlike Rust, = in C++ can run arbitrary code as determined by the type that is being
copied or moved.

20.5 Clone

Sometimes you want to make a copy of a value. The Clone trait accomplishes this.

fn say_hello(name: String) {
println!("Hello {name}")
}

127

https://en.cppreference.com/w/cpp/utility/move

fn main() {
let name = String::from("Alice");
say_hello(name.clone());
say_hello(name);

}

This slide should take about 2 minutes.

» The idea of Clone is to make it easy to spot where heap allocations are occurring. Look
for .clone() and a few others like vec! or Box: :new.

* It's common to ”clone your way out” of problems with the borrow checker, and return
later to try to optimize those clones away.

* clone generally performs a deep copy of the value, meaning that if you e.g. clone an
array, all of the elements of the array are cloned as well.

* The behavior for clone is user-defined, so it can perform custom cloning logic if needed.

20.6 Copy Types

While move semantics are the default, certain types are copied by default:

fn main() {
let x = 42;
let y = x;
dbg!(x); // would not be accessible if not Copy
dbg!(y);
}

These types implement the Copy trait.
You can opt-in your own types to use copy semantics:

#[derive(Copy, Clone, Debug)]
struct Point(i32, i32);

fn main() {
let pl = Point(3, 4);
let p2 = p1;
println!("pl: {pl:?}");
println! ("p2: {p2:?}");

+ After the assignment, both p1 and p2 own their own data.
* We can also use pl.clone() to explicitly copy the data.

This slide should take about 5 minutes.
Copying and cloning are not the same thing:

* Copying refers to bitwise copies of memory regions and does not work on arbitrary
objects.

* Copying does not allow for custom logic (unlike copy constructors in C++).

* Cloning is a more general operation and also allows for custom behavior by implement-
ing the Clone trait.

128

* Copying does not work on types that implement the Drop trait.
In the above example, try the following:

* Add a String field to struct Point. It will not compile because String is not a Copy
type.

* Remove Copy from the derive attribute. The compiler error is now in the println!
for pl.

» Show that it works if you clone p1 instead.

More to Explore

» Shared references are Copy/Clone, mutable references are not. This is because Rust
requires that mutable references be exclusive, so while it's valid to make a copy of a
shared reference, creating a copy of a mutable reference would violate Rust's borrowing
rules.

20.7 The Drop Trait

Values which implement Drop can specify code to run when they go out of scope:

struct Droppable {
name: &'static str,
}

impl Drop for Droppable {
fn drop(&mut self) {
println!("Dropping {}", self.name);
}
}

fn main() {
let a = Droppable { name: "a" };

{
let b = Droppable { name: "b" };
{
let ¢ = Droppable { name: "c" };
let d = Droppable { name: "d" };
println! ("Exiting innermost block");
}
println! ("Exiting next block");
}
drop(a);

println! ("Exiting main");
}

This slide should take about 8 minutes.

* Note that std: :mem: :drop is not the same as std: :ops: :Drop: :drop.
* Values are automatically dropped when they go out of scope.

129

https://doc.rust-lang.org/std/ops/trait.Drop.html

* When a value is dropped, if it implements std: :ops: :Drop then its Drop: : drop im-
plementation will be called.

* All its fields will then be dropped too, whether or not it implements Drop.

* std: :mem: :drop is just an empty function that takes any value. The significance is that
it takes ownership of the value, so at the end of its scope it gets dropped. This makes it a
convenient way to explicitly drop values earlier than they would otherwise go out of
scope.

— This can be useful for objects that do some work on drop: releasing locks, closing
files, etc.

Discussion points:

* Why doesn't Drop: :drop take self?
— Short-answer: If it did, std: :mem: :drop would be called at the end of the block,
resulting in another call to Drop: : drop, and a stack overflow!
» Try replacing drop(a) with a.drop().

20.8 Exercise: Builder Type

In this example, we will implement a complex data type that owns all of its data. We will
use the ”builder pattern” to support building a new value piece-by-piece, using convenience
functions.

Fill in the missing pieces.

#[derive(Debug)]
enum Language {
Rust,
Java,
Perl,

}

#[derive(Clone, Debug)]

struct Dependency {
name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {
name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
/// Return a representation of this package as a dependency, for use in
/// building other packages.
fn as_dependency(&self) -> Dependency {

130

todo! ("1")

}

/// A builder for a Package. Use “build()" to create the "Package itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {
todo!("2")
}

/// Set the package version.

fn version(mut self, version: impl Into<String>) -> Self {
self.0.version = version.into();
self

}

/// Set the package authors.

fn authors(mut self, authors: Vec<String>) -> Self {
todo! ("3")

}

/// Add an additional dependency.

fn dependency(mut self, dependency: Dependency) -> Self {
todo! ("4")

}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {

todo! ("5")
}

fn build(self) -> Package {
self.0
}
}

fn main() {

let base64 = PackageBuilder::new("base64").version("0.13").build();

dbg! (&baseb4) ;

let log =
PackageBuilder: :new("log").version("0.4").language(Language: :Rust).build();

dbg! (&log) ;

let serde = PackageBuilder: :new("serde")
.authors(vec!["djmitche".into()])
.version(String::from("4.0"))
.dependency(base64.as_dependency())
.dependency(log.as_dependency())
Lbuild();

dbg! (serde) ;

131

20.8.1 Solution

#[derive(Debug)]
enum Language {
Rust,
Java,
Perl,

}

#[derive(Clone, Debug)]

struct Dependency {
name: String,
version_expression: String,

}

/// A representation of a software package.
#[derive(Debug)]
struct Package {
name: String,
version: String,
authors: Vec<String>,
dependencies: Vec<Dependency>,
language: Option<Language>,

}

impl Package {
/// Return a representation of this package as a dependency, for use in
/// building other packages.
fn as_dependency(&self) -> Dependency {
Dependency {
name: self.name.clone(),
version_expression: self.version.clone(),

}

/// A builder for a Package. Use “build()" to create the "Package™ itself.
struct PackageBuilder(Package);

impl PackageBuilder {
fn new(name: impl Into<String>) -> Self {
Self(Package {
name: name.into(),
version: "0.1".into(),
authors: Vec: :new(),
dependencies: Vec::new(),
language: None,

)

132

/// Set the package version.

fn version(mut self, version: impl Into<String>) -> Self {
self.0.version = version.into();
self

}

/// Set the package authors.

fn authors(mut self, authors: Vec<String>) -> Self {
self.?.authors = authors;
self

}

/// Add an additional dependency.

fn dependency(mut self, dependency: Dependency) -> Self {
self.0.dependencies.push(dependency);
self

}

/// Set the language. If not set, language defaults to None.
fn language(mut self, language: Language) -> Self {
self.?.language = Some(language);

self

}

fn build(self) -> Package {
self.0

}

}

fn main() {
let base64 = PackageBuilder::new("base64").version("0.13").build();
dbg! (&baseb4) ;
let log =
PackageBuilder: :new("log").version("0.4").language(Language: :Rust).build();
dbg! (&log);
let serde = PackageBuilder::new("serde")
.authors(vec!["djmitche" .into()])
.version(String::from("4.0"))
.dependency (base64.as_dependency())
.dependency(log.as_dependency())
Cbuild();
dbg! (serde) ;

133

Chapter 21

Smart Pointers

This segment should take about 55 minutes. It contains:

Slide Duration
Box 10 minutes
Rc 5 minutes

Owned Trait Objects 10 minutes
Exercise: Binary Tree 30 minutes

21.1 Box<T>

Box is an owned pointer to data on the heap:

fn main() {
let five = Box: :new(5);
println!("five: {}", *five);

}

Stack Heap
five :
tommm - + : tomm oo +
B et NI
Fommm o + : Fommm o +

Box<T> implements Deref<Target = T>, which means that you can call methods from T
directly on a Box<T>.

Recursive data types or data types with dynamic sizes cannot be stored inline without a
pointer indirection. Box accomplishes that indirection:

134

https://doc.rust-lang.org/std/boxed/struct.Box.html
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion
https://doc.rust-lang.org/std/ops/trait.Deref.html#more-on-deref-coercion

#[derive(Debug)]
enum List<T> {

Element (T, Box<List<T>>),

Nil,
}

fn main() {
let list: List<i32> =
List::Element(1, Box::new(List::Element(2, Box::new(List::Nil))));
println! ("{list:?}");
}

Stack Heap

list

T TR e : : T T e T r——— TR e
| Element | 1 | O--4----+----- +--->| Element | 2 | o--+--->| Nil | // | // |
P, Fom et : : Fom oo oot Fom e - ot

This slide should take about 8 minutes.
* Boxislike std: :unique_ptr in C++, except that it's guaranteed to be not null.
* A Box can be useful when you:

— have a type whose size can't be known at compile time, but the Rust compiler wants
to know an exact size.

— want to transfer ownership of a large amount of data. To avoid copying large
amounts of data on the stack, instead store the data on the heap in a Box so only
the pointer is moved.

» If Box was not used and we attempted to embed a List directly into the List, the
compiler would not be able to compute a fixed size for the struct in memory (the List
would be of infinite size).

* Box solves this problem as it has the same size as a regular pointer and just points at
the next element of the List in the heap.

* Remove the Box in the List definition and show the compiler error. We get the message
?recursive without indirection”, because for data recursion, we have to use indirection,
a Box or reference of some kind, instead of storing the value directly.

Though Box looks like std: :unique_ptr in C++, it cannot be empty/null. This makes
Box one of the types that allow the compiler to optimize storage of some enums (the
“niche optimization”).

135

21.2 Rc

Rc is a reference-counted shared pointer. Use this when you need to refer to the same data
from multiple places:

use std::rc::Rc;

fn main() {

let a = Rc::new(10);
let b = Rc::clone(&a);
dbg!(a);

dbg!(b);

}

Each Rc points to the same shared data structure, containing strong and weak pointers and
the value:

Stack Heap
+----- + R e i + .
a: | o---|---:1--+--:-->| count: 2 | value: 10 | :
oo + oo oo oo - + :
b: | 0---]---:--% :
+----- + - - - - - - - - - - - - - - - - -

* See Arc and Mutex if you are in a multi-threaded context.
* You can downgrade a shared pointer into a Weak pointer to create cycles that will get
dropped.

This slide should take about 5 minutes.

* Rc's count ensures that its contained value is valid for as long as there are references.

* Rcin Rustislike std: : shared_ptr in C++.

* Rc::cloneis cheap: it creates a pointer to the same allocation and increases the refer-
ence count. Does not make a deep clone and can generally be ignored when looking for
performance issues in code.

* make_mut actually clones the inner value if necessary ("clone-on-write”) and returns a
mutable reference.

* Use Rc: :strong_count to check the reference count.

* Rc: :downgrade gives you a weakly reference-counted object to create cycles that will
be dropped properly (likely in combination with RefCell).

21.3 Owned Trait Objects

We previously saw how trait objects can be used with references, e.g &dyn Pet. However,
we can also use trait objects with smart pointers like Box to create an owned trait object:
Box<dyn Pet>.

136

https://doc.rust-lang.org/std/rc/struct.Rc.html
https://doc.rust-lang.org/std/sync/struct.Mutex.html
https://doc.rust-lang.org/std/rc/struct.Weak.html

struct Dog {
name: String,

age: 18,
}
struct Cat {
lives: 18,
}

trait Pet {
fn talk(&self) -> String;
}

impl Pet for Dog {
fn talk(&self) -> String {
format! ("Woof, my name is {}!", self.name)
}
}

impl Pet for Cat {
fn talk(&self) -> String {
String::from("Miau!")
}
}

fn main() {
let pets: Vec<Box<dyn Pet>> = vec!]
Box::new(Cat { lives: 9 }),
Box: :new(Dog { name: String::from("Fido"), age: 5 }),
1
for pet in pets {
println!("Hello, who are you? {}", pet.talk());

}
}
Memory layout after allocating pets:
Stack Heap
"pets: Vec<Box<dyn Pet>>" : "data: Cat" e e s
Fommmmeemos I — + S U R + | F |1 | d | o |
| ptr | O---t------- +--. ¢ | lives | 9 | AR LT,
| len | 2 | o] r Aeeeeee- Ho-m oo + A
| capacity | 2 | S A |
P Fomme o= + : | : | oo -
S | data: "Dog" |
: | | doommo o e I +
---------------- R I tomm |-t m -4 | name | o, 4, 4 |
--t-->] 00 | 0 0-|----->] age | 5 |
: T [[—— S . Fomme e - +

137

| "Program text"

|

|

| | vtable

| | oo e e e oo - +

| Te---- >| "<Dog as Pet>::talk" |

| - +

| vtable

| S +

B >| "<Cat as Pet>::talk" |
oo e e oo o +

This slide should take about 10 minutes.

» Types that implement a given trait may be of different sizes. This makes it impossible to
have things like Vec<dyn Pet> in the example above.

* dyn Pet is a way to tell the compiler about a dynamically sized type that implements
Pet.

* In the example, pets is allocated on the stack and the vector data is on the heap. The
two vector elements are fat pointers:

— A fat pointer is a double-width pointer. It has two components: a pointer to the
actual object and a pointer to the virtual method table (vtable) for the Pet imple-
mentation of that particular object.

— The data for the Dog named Fido is the name and age fields. The Cat hasa lives
field.

* Compare these outputs in the above example:
printIn! ("{} {}", std::mem::size_of::<Dog>(), std::mem::size_of::<Cat>());
printIn! ("{} {}", std::mem::size_of::<&Dog>(), std::mem::size_of::<&Cat>());
println!("{}", std::mem::size_of::<&dyn Pet>());
println! ("{}", std::mem::size_of::<Box<dyn Pet>>());

21.4 Exercise: Binary Tree

A binary tree is a tree-type data structure where every node has two children (left and right).
We will create a tree where each node stores a value. For a given node N, all nodes in a N's left
subtree contain smaller values, and all nodes in N's right subtree will contain larger values.
A given value should only be stored in the tree once, i.e. no duplicate nodes.

Implement the following types, so that the given tests pass.

/// A node in the binary tree.
#[derive(Debug)]
struct Node<T: Ord> {
value: T,
left: Subtree<T>,
right: Subtree<T>,
}

/// A possibly-empty subtree.
#[derive(Debug)]

138

https://en.wikipedia.org/wiki/Virtual_method_table

struct Subtree<T: Ord>(Option<Box<Node<T>>>);

/// A container storing a set of values, using a binary tree.
/117
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord> {
root: Subtree<T>,
}

impl<T: Ord> BinaryTree<T> {
fn new() -> Self {
Self { root: Subtree::new() }
}

fn insert(&mut self, value: T) {
self.root.insexrt(value);

}

fn has(&self, value: &T) -> bool {
self.root.has(value)

}

fn len(&self) -> usize {
self.root.len()

}
}
// Implement "new’ , “insert’, "len’, and "has for "Subtree’.
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn len() {

let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);
assert_eq! (tree.len(), 1);
tree.insert(1);
assert_eq! (tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);
tree.insert(3);
assert_eq! (tree.len(), 3);

}

#[test]

fn has() {
let mut tree = BinaryTree::new();

139

fn check_has(tree: &BinaryTree<i32>, exp: &[bool]l) {
let got: Vec<bool> =
(0..exp.len()).map(|i| tree.has(&(i as i32))).collect();
assert_eq! (&got, exp);
}

check_has(&tree, &[false, false, false, false, false]);
tree.insert(0);

check_has (&tree, &[true, false, false, false, false]);
tree.insert(4);

check_has(&tree, &[true, false, false, false, true]);
tree.insert (4);

check_has(&tree, &[true, false, false, false, truel);
tree.insert(3);

check_has(&tree, &[true, false, false, true, truel);

}

#[test]
fn unbalanced() {
let mut tree = BinaryTree::new();
for i in 0..100 {
tree.insert(i);

}
assert_eq! (tree.len(), 100);
assert! (tree.has(&50));

21.4.1 Solution

use std::cmp::0xrdering;

/// A node in the binary tree.

#[derive(Debug)]
struct Node<T: Ord> {
value: T,

left: Subtree<T>,
right: Subtree<T>,
}

/// A possibly-empty subtree.
#[derive(Debug)]
struct Subtree<T: Ord>(Option<Box<Node<T>>>);

/// A container storing a set of values, using a binary tree.
vy
/// If the same value is added multiple times, it is only stored once.
#[derive(Debug)]
pub struct BinaryTree<T: Ord> {
root: Subtree<T>,

}

140

impl<T:

fn

fn

fn

f

=]

impl<T:

fn

fn

}

Ord> BinaryTree<T> {
new() -> Self {
Self { root: Subtree::new() }

insert(&mut self, value: T) {
self.root.insert(value);

has(&self, value: &T) -> bool {
self.root.has(value)

len(&self) -> usize {
self.root.len()

0rd> Subtree<T> {
new() -> Self {
Self(None)

insert(&mut self, value: T) {
match &mut self.0 {
None => self.0® = Some(Box: :new(Node: :new(value))),
Some(n) => match value.cmp(&n.value) {
Ordering::Less => n.left.insert(value),
Ordering::Equal => {}
Ordering: :Greater => n.right.insert(value),
b

fn has(&self, value: &T) -> bool {

}

match &self.0 {

None => false,

Some(n) => match value.cmp(&n.value) {
Ordering::Less => n.left.has(value),
Ordering::Equal => true,

Ordering: :Greater => n.right.has(value),

b

fn len(&self) -> usize {

match &self.0 {
None => 0,
Some(n) => 1 + n.left.len() + n.right.len(),

141

}

impl<T: Ord> Node<T> {
fn new(value: T) -> Self {
Self { value, left: Subtree::new(), right: Subtree::new() }
}
}

#[cfg(test)]
mod tests {
use super::*;

#[test]

fn len() {
let mut tree = BinaryTree::new();
assert_eq!(tree.len(), 0);
tree.insert(2);
assert_eq!(tree.len(), 1);
tree.insert(1);
assert_eq!(tree.len(), 2);
tree.insert(2); // not a unique item
assert_eq!(tree.len(), 2);
tree.insert(3);
assert_eq! (tree.len(), 3);

}
#[test]
fn has() {
let mut tree = BinaryTree::new();
fn check_has(tree: &BinaryTree<i32>, exp: &[bool]l) {
let got: Vec<bool> =
(0..exp.len()).map(|i| tree.has(&(i as i32))).collect();
assert_eq! (&got, exp);
}
check_has(&tree, &[false, false, false, false, false]);
tree.insert (0);
check_has(&tree, &[true, false, false, false, falsel);
tree.insert (4);
check_has (&tree, &[true, false, false, false, truel);
tree.insert(4);
check_has(&tree, &[true, false, false, false, true]);
tree.insert(3);
check_has(&tree, &[true, false, false, true, true]);
}
#[test]

fn unbalanced() {
let mut tree = BinaryTree::new();
for i in 0..100 {

142

tree.insert(i);

}
assert_eq! (tree.len(), 100);
assert! (tree.has(&50));

143

Part VI

Day 3: Afternoon

144

Chapter 22

Welcome Back

Including 10 minute breaks, this session should take about 1 hour and 55 minutes. It contains:

Segment Duration

Borrowing 55 minutes
Lifetimes 50 minutes

145

Chapter 23

Borrowing

This segment should take about 55 minutes. It contains:

Slide Duration
Borrowing a Value 10 minutes
Borrow Checking 10 minutes
Borrow Errors 3 minutes
Interior Mutability 10 minutes

Exercise: Health Statistics 20 minutes

23.1 Borrowing a Value

As we saw before, instead of transferring ownership when calling a function, you can let a
function borrow the value:

#[derive(Debug)]

struct Point(i32, i32);

fn add(pl: &Point, p2: &Point) -> Point {
Point(pl.0 + p2.0, pl.1 + p2.1)

}

fn main() {
let pl = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&pl, &p2);

println! ("{pl:?} + {p2:?} = {p3:?}");
* The add function borrows two points and returns a new point.

* The caller retains ownership of the inputs.

This slide should take about 10 minutes.

146

This slide is a review of the material on references from day 1, expanding slightly to include
function arguments and return values.

More to Explore

Notes on stack returns and inlining:

* Demonstrate that the return from add is cheap because the compiler can eliminate the
copy operation, by inlining the call to add into main. Change the above code to print
stack addresses and run it on the Playground or look at the assembly in Godbolt. In
the ”DEBUG” optimization level, the addresses should change, while they stay the same
when changing to the "RELEASE” setting:

#[derive(Debug)]
struct Point(i32, i32);

fn add(pl: &Point, p2: &Point) -> Point {
let p = Point(pl.0 + p2.0, pl.1 + p2.1);
println!("&p.0: {:p}", &p.0);

p

}

pub fn main() {
let pl = Point(3, 4);
let p2 = Point(10, 20);
let p3 = add(&pl, &p2);

println!("&p3.0: {:p}", &p3.0);
println! ("{pl:?} + {p2:?} = {p3:?}");
}

* The Rust compiler can do automatic inlining, that can be disabled on a function level
with #[inline(never)].

* Once disabled, the printed address will change on all optimization levels. Looking at
Godbolt or Playground, one can see that in this case, the return of the value depends
on the ABI e.g. on amd64 the two i32 that is making up the point will be returned in 2
registers (eax and edx).

23.2 Borrow Checking

Rust's borrow checker puts constraints on the ways you can borrow values. We've already
seen that a reference cannot outlive the value it borrows:

fn main() {

let x_ref = {
let x = 10;
&x

}

dbg! (x_ref);

147

https://play.rust-lang.org/?version=stable&mode=release&edition=2024&gist=0cb13be1c05d7e3446686ad9947c4671
https://rust.godbolt.org/

There's also a second main rule that the borrow checker enforces: The aliasing rule. For a
given value, at any time:

* You can have one or more shared references to the value, or
* You can have exactly one exclusive reference to the value.

fn main() {
let mut a = 10;
let b = &a;

{
let c = &mut a;
*c = 20;

}

dbg!(a);
dbg!(b);
}

This slide should take about 10 minutes.

* The ”outlives” rule was demonstrated previously when we first looked at references.
We review it here to show students that the borrow checking is following a few different
rules to validate borrowing.

* The above code does not compile because a is borrowed as mutable (through c) and as
immutable (through b) at the same time.

— Note that the requirement is that conflicting references not exist at the same point.
It does not matter where the reference is dereferenced. Try commenting out *c =
20 and show that the compiler error still occurs even if we never use c.

— Note that the intermediate reference c isn't necessary to trigger a borrow conflict.
Replace c with a direct mutation of a and demonstrate that this produces a similar
error. This is because direct mutation of a value effectively creates a temporary
mutable reference.

* Move the dbg! statement for b before the scope that introduces c to make the code
compile.

— After that change, the compiler realizes that b is only ever used before the new
mutable borrow of a through c. This is a feature of the borrow checker called
“non-lexical lifetimes”.

More to Explore

» Technically, multiple mutable references to a piece of data can exist at the same time
via re-borrowing. This is what allows you to pass a mutable reference into a function
without invalidating the original reference. This playground example demonstrates
that behavior.

* Rust uses the exclusive reference constraint to ensure that data races do not occur in
multi-threaded code, since only one thread can have mutable access to a piece of data
at a time.

* Rust also uses this constraint to optimize code. For example, a value behind a shared
reference can be safely cached in a register for the lifetime of that reference.

* Fields of a struct can be borrowed independently of each other, but calling a method on
a struct will borrow the whole struct, potentially invalidating references to individual
fields. See this playground snippet for an example of this.

148

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=8f5896878611566845fe3b0f4dc5af68
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=f293a31f2d4d0d31770486247c2e8437

23.3 Borrow Errors

As a concrete example of how these borrowing rules prevent memory errors, consider the
case of modifying a collection while there are references to its elements:

fn main() {
let mut vec = vec![1, 2, 3, 4, 5];
let elem = &vec[2];
vec.push(6);
dbg! (elem);
}

Similarly, consider the case of iterator invalidation:

fn main() {
let mut vec = vec![1, 2, 3, 4, 5];
for elem in &vec {
vec.push(elem * 2);
}
}

This slide should take about 3 minutes.

* In both of these cases, modifying the collection by pushing new elements into it can
potentially invalidate existing references to the collection's elements if the collection
has to reallocate.

23.4 Interior Mutability

In some situations, it's necessary to modify data behind a shared (read-only) reference. For
example, a shared data structure might have an internal cache, and wish to update that cache
from read-only methods.

The ”interior mutability” pattern allows exclusive (mutable) access behind a shared reference.
The standard library provides several ways to do this, all while still ensuring safety, typically
by performing a runtime check.

This slide and its sub-slides should take about 10 minutes.

The main thing to take away from this slide is that Rust provides safe ways to modify data
behind a shared reference. There are a variety of ways to ensure that safety, and the next
sub-slides present a few of them.

23.4.1 Cell

Cell wraps a value and allows getting or setting the value using only a shared reference to
the Cell. However, it does not allow any references to the inner value. Since there are no
references, borrowing rules cannot be broken.

use std::cell::Cell;
fn main() {

let cell = Cell::new(5);

149

cell.set(123);
dbg! (cell.get());

* Cell is a simple means to ensure safety: it has a set method that takes &self. This
needs no runtime check, but requires moving values, which can have its own cost.

23.4.2 RefCell

RefCell allows accessing and mutating a wrapped value by providing alternative types Ref
and RefMut that emulate &T/&mut T without actually being Rust references.

These types perform dynamic checks using a counter in the RefCell to prevent existence of
a RefMut alongside another Ref/RefMut.

By implementing Deref (and DerefMut for RefMut), these types allow calling methods on
the inner value without allowing references to escape.

use std::cell::RefCell;
fn main() {

// Note that ‘cell” is NOT declared as mutable.
let cell = RefCell::new(5);

{
let mut cell_ref = cell.borrow_mut();
*cell_ref = 123;
// This triggers an error at runtime.
// let other = cell.borrow();
// println!("{}", other);

}

println!("{cell:?}");

* RefCell enforces Rust's usual borrowing rules (either multiple shared references or
a single exclusive reference) with a runtime check. In this case, all borrows are very
short and never overlap, so the checks always succeed.

* The extra block in the example is to end the borrow created by the call to borrow_mut
before we print the cell. Trying to print a borrowed RefCel1l just shows the message
"{borrowed}".

More to Explore

There are also OnceCell and OncelLock, which allow initialization on first use. Making these
useful requires some more knowledge than students have at this time.

150

23.5 Exercise: Health Statistics

You're working on implementing a health-monitoring system. As part of that, you need to
keep track of users' health statistics.

You'll start with a stubbed function in an impl block as well as a User struct definition. Your
goal is to implement the stubbed out method on the User struct defined in the impl block.

Copy the code below to https://play.rust-lang.org/ and fill in the missing method:

#![allow(dead_code)]
pub struct User {
name: String,
age: u32,
height: 32,
visit_count: u32,
last_blood_pressure: Option<(u32, u32)>,

pub struct Measurements {
height: 32,
blood_pressure: (u32, u32),

pub struct HealthReport<'a> {
patient_name: &'a str,
visit_count: u32,
height_change: 32,
blood_pressure_change: Option<(i32, i32)>,

}
impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {
Self { name, age, height, visit_count: @, last_blood_pressure: None }
}
pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport<'_> {
todo! ("Update a user's statistics based on measurements from a visit to the doc
}
}
#[test]

fn test_visit() {
let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq! (bob.visit_count, 0);
let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (120, 80) });
assert_eq! (report.patient_name, "Bob");
assert_eq! (report.visit_count, 1);
assert_eq! (report.blood_pressure_change, None);
assert!((report.height_change - ©0.9).abs() < 0.00001);

151

https://play.rust-lang.org/

let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (115, 76) });

assert_eq! (report.visit_count, 2);
assert_eq! (report.blood_pressure_change, Some((-5, -4)));
assert_eq! (report.height_change, 0.0);

23.5.1 Solution

#![allow(dead_code)]
pub struct User {
name: String,
age: u32,
height: 32,
visit_count: u32,
last_blood_pressure: Option<(u32, u32)>,

pub struct Measurements {
height: 32,
blood_pressure: (u32, u32),

pub struct HealthReport<'a> {

patient_name: &'a str,

visit_count: u32,

height_change: 32,

blood_pressure_change: Option<(i32, i32)>,
}

impl User {
pub fn new(name: String, age: u32, height: f32) -> Self {
Self { name, age, height, visit_count: @, last_blood_pressure: None }
}

pub fn visit_doctor(&mut self, measurements: Measurements) -> HealthReport<'_> {
self.visit_count += 1;
let bp = measurements.blood_pressure;
let report = HealthReport {
patient_name: &self.name,
visit_count: self.visit_count,
height_change: measurements.height - self.height,
blood_pressure_change: self
.last_blood_pressure
.map(|1lbp| (bp.? as 132 - 1lbp.0 as i32, bp.1 as i32 - lbp.1 as i32)),
},
self.height = measurements.height;
self.last_blood_pressure = Some(bp);

152

report

}

#[test]
fn test_visit() {
let mut bob = User::new(String::from("Bob"), 32, 155.2);
assert_eq! (bob.visit_count, 0);
let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (120, 80) });
assert_eq! (report.patient_name, "Bob");
assert_eq! (report.visit_count, 1);
assert_eq! (report.blood_pressure_change, None);
assert! ((report.height_change - ©.9).abs() < 0.00001);

let report =
bob.visit_doctor(Measurements { height: 156.1, blood_pressure: (115, 76) });

assert_eq!(report.visit_count, 2);

assert_eq! (report.blood_pressure_change, Some((-5, -4)));
assert_eq! (report.height_change, 0.0);

153

Chapter 24

Lifetimes

This segment should take about 50 minutes. It contains:

Slide Duration
Lifetime Annotations 10 minutes
Lifetime Elision 5 minutes

Lifetimes in Data Structures 5 minutes
Exercise: Protobuf Parsing 30 minutes

24.1 Lifetime Annotations

A reference has a lifetime, which must not ”outlive” the value it refers to. This is verified by
the borrow checker.

The lifetime can be implicit - this is what we have seen so far. Lifetimes can also be explicit:
&'a Point, &'document str. Lifetimes start with ' and 'a is a typical default name. Read
&'a Point as ”a borrowed Point which is valid for at least the lifetime a”.

Only ownership, not lifetime annotations, control when values are destroyed and determine
the concrete lifetime of a given value. The borrow checker just validates that borrows never
extend beyond the concrete lifetime of the value.

Explicit lifetime annotations, like types, are required on function signatures (but can be
elided in common cases). These provide information for inference at callsites and within the
function body, helping the borrow checker to do its job.

#[derive(Debug)]
struct Point(i32, i32);

fn left_most(pl: &Point, p2: &Point) -> &Point {
if pl.0 < p2.0 { pl } else { p2 }
}

fn main() {
let pl = Point(10, 10);

154

let p2 = Point(20, 20);
let p3 = left_most(&pl, &p2);
dbg!(p3);

}

This slide should take about 10 minutes.

In this example, the compiler does not know what lifetime to infer for p3. Looking inside the
function body shows that it can only safely assume that p3's lifetime is the shorter of p1 and
p2. But just like types, Rust requires explicit annotations of lifetimes on function arguments
and return values.

Add 'a appropriately to left_most:
fn left_most<'a>(pl: &'a Point, p2: &'a Point) -> &'a Point {

This says there is some lifetime ' a which both p1 and p2 outlive, and which outlives the return
value. The borrow checker verifies this within the function body, and uses this information
in main to determine a lifetime for p3.

Try dropping p2 in main before printing p3.

24.2 Lifetimes in Function Calls

Lifetimes for function arguments and return values must be fully specified, but Rust allows
lifetimes to be elided in most cases with a few simple rules. This is not inference -- it is just a
syntactic shorthand.

» Each argument which does not have a lifetime annotation is given one.

* If there is only one argument lifetime, it is given to all un-annotated return values.

o If there are multiple argument lifetimes, but the first one is for self, that lifetime is
given to all un-annotated return values.

#[derive(Debug)]
struct Point(i32, i32);

fn cab_distance(pl: &Point, p2: &Point) -> 132 {
(pl.0 - p2.0).abs() + (pl.1 - p2.1).abs()
}

fn find_nearest<'a>(points: &'a [Point], query: &Point) -> Option<&'a Point> {
let mut nearest = None;
for p in points {
if let Some((_, nearest_dist)) = nearest {
let dist = cab_distance(p, query);
if dist < nearest_dist {
nearest = Some((p, dist));
}
} else {
nearest = Some((p, cab_distance(p, query)));
Y,
}
nearest.map(|(p, _)| p)

155

https://doc.rust-lang.org/nomicon/lifetime-elision.html

fn main() {
let points = &[Point(1, @), Point(1, ©), Point(-1, @), Point(0, -1)1;
let nearest = {
let query = Point(0, 2);
find_nearest(points, &query)
}s
println!("{:?}", nearest);
}

This slide should take about 5 minutes.
In this example, cab_distance is trivially elided.

The nearest function provides another example of a function with multiple references in its
arguments that requires explicit annotation. In main, the return value is allowed to outlive
the query.

Try adjusting the signature to ”lie” about the lifetimes returned:
fn find_nearest<'a, 'g>(points: &'a [Point], query: &'q Point) -> Option<&'q Point> {

This won't compile, demonstrating that the annotations are checked for validity by the
compiler. Note that this is not the case for raw pointers (unsafe), and this is a common source
of errors with unsafe Rust.

Students may ask when to use lifetimes. Rust borrows always have lifetimes. Most of the time,
elision and type inference mean these don't need to be written out. In more complicated
cases, lifetime annotations can help resolve ambiguity. Often, especially when prototyping,
it's easier to just work with owned data by cloning values where necessary.

24.3 Lifetimes in Data Structures

If a data type stores borrowed data, it must be annotated with a lifetime:

#[derive(Debug)]

enum HighlightColor {
Pink,
Yellow,

}

#[derive(Debug)]

struct Highlight<'document> {
slice: &'document str,
color: HighlightColor,

}

fn main() {
let doc = String::from("The quick brown fox jumps over the lazy dog.");
let noun = Highlight { slice: &doc[16..19], color: HighlightColor::Yellow };
let verb = Highlight { slice: &doc[20..25], color: HighlightColor::Pink };
// drop(doc);
dbg! (noun);

156

dbg! (vexb);
}

This slide should take about 5 minutes.

* In the above example, the annotation on Highlight enforces that the data underlying
the contained &str lives at least as long as any instance of Highlight that uses that
data. A struct cannot live longer than the data it references.

* If doc is dropped before the end of the lifetime of noun or verb, the borrow checker
throws an error.

* Types with borrowed data force users to hold on to the original data. This can be useful
for creating lightweight views, but it generally makes them somewhat harder to use.

* When possible, make data structures own their data directly.

* Some structs with multiple references inside can have more than one lifetime annotation.
This can be necessary if there is a need to describe lifetime relationships between the
references themselves, in addition to the lifetime of the struct itself. Those are very
advanced use cases.

24.4 Exercise: Protobuf Parsing

In this exercise, you will build a parser for the protobuf binary encoding. Don't worry, it's
simpler than it seems! This illustrates a common parsing pattern, passing slices of data. The
underlying data itself is never copied.

Fully parsing a protobuf message requires knowing the types of the fields, indexed by their
field numbers. That is typically provided in a proto file. In this exercise, we'll encode that
information into match statements in functions that get called for each field.

We'll use the following proto:

message PhoneNumber {
optional string number =
optional string type = 2;
}

1;

message Person {
optional string name = 1;
optional int32 id = 2;
repeated PhoneNumber phones = 3;

}

Messages

A proto message is encoded as a series of fields, one after the next. Each is implemented as
a ”tag” followed by the value. The tag contains a field number (e.g., 2 for the id field of a
Person message) and a wire type defining how the payload should be determined from the
byte stream. These are combined into a single integer, as decoded in unpack_tag below.

Varint

Integers, including the tag, are represented with a variable-length encoding called VARINT.
Luckily, parse_varint is defined for you below.

157

https://protobuf.dev/programming-guides/encoding/

Wire Types
Proto defines several wire types, only two of which are used in this exercise.

The Varint wire type contains a single varint, and is used to encode proto values of type
int32 such as Person.1id.

The Len wire type contains a length expressed as a varint, followed by a payload of that
number of bytes. This is used to encode proto values of type string such as Person.name. It
is also used to encode proto values containing sub-messages such as Person.phones, where
the payload contains an encoding of the sub-message.

Exercise

The given code also defines callbacks to handle Person and PhoneNumber fields, and to parse
a message into a series of calls to those callbacks.

What remains for you is to implement the parse_field function and the ProtoMessage
trait for Person and PhoneNumber.

/// A wire type as seen on the wire.
enum WireType {
/// The Varint WireType indicates the value is a single VARINT.
Varint,
// The 164 WireType indicates that the value is precisely 8 bytes in
// little-endian order containing a 64-bit signed integer or double type.
/1164, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a
/// VARINT followed by exactly that number of bytes.
Len,
// The I32 WireType indicates that the value is precisely 4 bytes in
// little-endian order containing a 32-bit signed integer or float type.
//132, -- not needed for this exercise

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint(u64),
//164(i64), -- not needed for this exercise
Len(&"'a [u8]),
//132(i32), -- not needed for this exercise
}
#[derive(Debug)]

/// A field, containing the field number and its value.
struct Field<'a> {

field_num: u64,

value: FieldValue<'a>,

}

trait ProtoMessage<'a>: Default {
fn add_field(&mut self, field: Field<'a>);

158

}

impl From<u64> for WireType {
fn from(value: u64) -> Self {
match value {
@ => WireType::Varint,

//1 => WireType::164, -- not needed for this exercise
2 => WireType: :Len,
//5 => WireType::I32, -- not needed for this exercise

_ => panic!("Invalid wire type: {value}"),

}

impl<'a> FieldValue<'a> {
fn as_str(&self) -> &'a str {
let FieldValue::Len(data) = self else {
panic! ("Expected string to be a "Len’ field");
b
std::str::from_utf8(data).expect("Invalid string")
}

fn as_bytes(&self) -> &'a [u8] {
let FieldValue::Len(data) = self else {
panic! ("Expected bytes to be a ‘Len’ field");
b
data
}

fn as_u64(&self) -> ubd {
let FieldValue::Varint(value) = self else {
panic! ("Expected "u64" to be a “Varint® field");
b
*value

}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> (u64, &[u8]) {
for i in 0..7 {
let Some(b) = data.get(i) else {
panic!("Not enough bytes for varint");
b
if b & 0x80 == 0 {
// This is the last byte of the VARINT, so convert it to
// a u64 and return it.
let mut value = 0Qu64;
for b in data[..=1].iter() .rev() {
value = (value << 7) | (b & 0x7f) as ub4;

}
return (value, &data[i + 1..]);

159

}

// More than 7 bytes is invalid.
panic!("Too many bytes for varint");

}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> (ub4d, WireType) {
let field_num = tag >> 3;
let wire_type = WireType::from(tag & 0x7);
(field_num, wire_type)

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> (Field<'_>, &[u8]) {
let (tag, remainder) = parse_varint(data);
let (field_num, wire_type) = unpack_tag(tag);
let (fieldvalue, remainder) = match wire_type {
_ => todo!("Based on the wire type, build a Field, consuming as many bytes as n
i
todo! ("Return the field, and any un-consumed bytes.")

}

/// Parse a message in the given data, calling 'T::add_field" for each field in
/// the message.
/17
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> T {
let mut result = T::default();
while !data.is_empty() {
let parsed = parse_field(data);
result.add_field(parsed.0);
data = parsed.l;
}

result

}

#[derive(Debug, Default)]
strxuct PhoneNumber<'a> {
number: &'a str,

type_: &'a str,
}

#[derive(Debug, Default)]
struct Person<'a> {
name: &'a str,
id: u64,
phone: Vec<PhoneNumber<'a>>,

160

// TODO: Implement ProtoMessage for Person and PhoneNumber.

#[test]
fn test_id() {
let person_id: Person = parse_message(&[0x10, 0x2al);
assert_eq! (person_id, Person { name: "", id: 42, phone: vec![] });

}

#[test]
fn test_name() {
let person_name: Person = parse_message(&[
Ox0a, 0x0e, Ox62, Ox65, 0x61, 0x75, Ox74, Ox69, 0x66, 0x75, Ox6c, 0x20,
Ox6e, 0x61, @Ox6d, Ox65,
1),
assert_eq! (person_name, Person { name: "beautiful name", id: @, phone: vec![] });

}

#[test]
fn test_just_person() {
let person_name_id: Person =
parse_message(&[0x0a, 0x04, 0x45, 0x76, 0x61, Ox6e, 0x10, 0x16]1);
assert_eq! (person_name_id, Person { name: "Evan", id: 22, phone: vec![] });

}

#[test]
fn test_phone() {
let phone: Person = parse_message(&[
0x0a, 0x00, 0x10, 0x00, O0xla, 0x16, Ox0Qa, OxQe, Ox2b, 0x31, 0x32, 0x33,
0x34, 0x2d, ©x37, Ox37, Ox37, 0x2d, ©0x39, 0x30, ©0x39, 0x30, 0x12, 0x04,
0x68, Ox6f, Ox6d, OX65,
1),
assert_eq! (
phone,
Person {
name: "",
id: 0,
phone: vec![PhoneNumber { number: "+1234-777-9090", type_: "home" },1,

)
}

// Put that all together into a single parse.

#[test]

fn test_full_person() {

let person: Person = parse_message(&[

0x0a, 0x07, Ox6d, Ox61, Ox78, 0x77, @x65, O0x6C, Oxb6bC, Ox10@, Ox2a, 0Oxla,
0x16, @Ox0a, 0x0e, 0x2b, 0x31, @0x32, 0x30, 0x32, ©0x2d, 0x35, ©0x35, 0x35,
Ox2d, ©x31, ©0x32, 0x31, 0x32, 0x12, 0x04, 0x68, Ox6f, 0x6d, 0x65, 0xla,
0x18, @Ox0a, 0x0e, Ox2b, 0x31, O0x38, 0x30, 0x30, ©0x2d, 0x38, 0x36, 0x37,
0x2d, ©0x35, @Ox33, Ox30, 0x38, 0x12, 0x06, 0x6d, @Ox6f, Ox62, Ox69, Ox6C,

161

0x65,
1),
assert_eq! (
person,
Person {
name: "maxwell",
id: 42,
phone: vec![
PhoneNumber { number: "+1202-555-1212", type_: "home" },
PhoneNumber { number: "+1800-867-5308", type_: "mobile" },

)
}

This slide and its sub-slides should take about 30 minutes.

* In this exercise there are various cases where protobuf parsing might fail, e.g. if you
try to parse an 132 when there are fewer than 4 bytes left in the data buffer. In normal
Rust code we'd handle this with the Result enum, but for simplicity in this exercise
we panic if any errors are encountered. On day 4 we'll cover error handling in Rust in
more detail.

24.4.1 Solution

/// A wire type as seen on the wire.
enum WireType {
/// The Varint WireType indicates the value is a single VARINT.
Varint,
// The 164 WireType indicates that the value is precisely 8 bytes in
// little-endian order containing a 64-bit signed integer or double type.
//164, -- not needed for this exercise
/// The Len WireType indicates that the value is a length represented as a
/// VARINT followed by exactly that number of bytes.
Len,
// The I32 WireType indicates that the value is precisely 4 bytes in
// little-endian order containing a 32-bit signed integer or float type.
//132, -- not needed for this exercise

}

#[derive(Debug)]
/// A field's value, typed based on the wire type.
enum FieldValue<'a> {

Varint (u64),
//164(i64), -- not needed for this exercise
Len(&'a [u8]),
//132(i32), -- not needed for this exercise
}
#[derive(Debug)]

/// A field, containing the field number and its value.
struct Field<'a> {

162

field_num: u64,
value: FieldValue<'a>,

}

trait ProtoMessage<'a>: Default {
fn add_field(&mut self, field: Field<'a>);
}

impl From<u64> for WireType {
fn from(value: u64) -> Self {
match value {
® => WireType::Varint,

//1 => WireType::164, -- not needed for this exercise
2 => WireType: :Len,
//5 => WireType::I32, -- not needed for this exercise

_ => panic!("Invalid wire type: {value}"),

}

impl<'a> FieldValue<'a> {
fn as_str(&self) -> &'a str {
let FieldValue::Len(data) = self else {
panic! ("Expected string to be a “Len’ field");
b
std::str::from_utf8(data).expect("Invalid string")
}

fn as_bytes(&self) -> &'a [u8] {
let FieldValue::Len(data) = self else {
panic! ("Expected bytes to be a ‘Len’ field");
b
data
}

fn as_u64(&self) -> ubd {
let FieldValue::Varint(value) = self else {
panic! ("Expected "u64" to be a "Varint® field");
b
*value

}

/// Parse a VARINT, returning the parsed value and the remaining bytes.
fn parse_varint(data: &[u8]) -> (u64, &[u8]) {
for i in 0..7 {
let Some(b) = data.get(i) else {
panic!("Not enough bytes for varint");
}
if b & 0x80 == 0 {
// This is the last byte of the VARINT, so convert it to

163

// a ub4 and return it.
let mut value = 0u64;
for b in data[..=i].itexr().rev() {
value = (value << 7) | (b & 0x7f) as ub4;

}

return (value, &data[i + 1..]);

}

// More than 7 bytes is invalid.
panic!("Too many bytes for varint");

}

/// Convert a tag into a field number and a WireType.
fn unpack_tag(tag: u64) -> (ub4, WireType) {
let field_num = tag >> 3;
let wire_type = WireType::from(tag & 0x7);
(field_num, wire_type)
}

/// Parse a field, returning the remaining bytes
fn parse_field(data: &[u8]) -> (Field<'_>, &[u8]) {
let (tag, remainder) = parse_varint(data);
let (field_num, wire_type) = unpack_tag(tag);
let (fieldvalue, remainder) = match wire_type {
WireType::Varint => {
let (value, remainder) = parse_varint(remainder);
(FieldValue: :Varint(value), remainder)
}
WireType::Len => {
let (len, remainder) = parse_varint(remainder);
let len = len as usize; // cast for simplicity
let (value, remainder) = remainder.split_at(len);
(FieldValue: :Len(value), remainder)

}
}
(Field { field_num, value: fieldvalue }, remainder)
}

/// Parse a message in the given data, calling 'T::add_field for each field
/// the message.
/17
/// The entire input is consumed.
fn parse_message<'a, T: ProtoMessage<'a>>(mut data: &'a [u8]) -> T {
let mut result = T::default();
while !data.is_empty() {
let parsed = parse_field(data);
result.add_field(parsed.0);
data = parsed.l;

}
result

164

in

}

#[derive(PartialEq)]

#[derive(Debug, Default)]

struct PhoneNumber<'a> {
number: &'a str,
type_: &'a str,

}

#[derive(PartialEq)]
#[derive(Debug, Default)]
struct Person<'a> {

name: &'a str,

id: u64,

phone: Vec<PhoneNumber<'a>>,

}

impl<'a> ProtoMessage<'a> for Person<'a> {
fn add_field(&mut self, field: Field<'a>) {
match field.field_num {
1 => self.name = field.value.as_str(),
2 => self.id = field.value.as_u64(),
3 => self.phone.push(parse_message(field.value.as_bytes())),
=> {} // skip everything else

}

impl<'a> ProtoMessage<'a> for PhoneNumber<'a> {
fn add_field(&mut self, field: Field<'a>) {
match field.field_num {
1 => self.number = field.value.as_str(),
2 => self.type_ = field.value.as_stx(),
=> {} // skip everything else

}

#[test]
fn test_id() {
let person_id: Person = parse_message(&[0x10, 0x2al);
assert_eq! (person_id, Person { name: "", id: 42, phone: vec![] });

}

#[test]
fn test_name() {
let person_name: Person = parse_message(&[
Ox0a, Ox0e, 0x62, 0x65, 0x61, Ox75, @Ox74, Ox69, 0x66, 0x75, 0x6C, 0x20,
Ox6e, Ox61, 0x6d, 0x65,
1

assert_eq! (person_name, Person { name: "beautiful name", id: @, phone: vec![] });

165

}

#[test]
fn test_just_person() {
let person_name_id: Person =
parse_message(&[0x0a, 0x04, 0x45, 0x76, 0x61, Ox6e, 0x10, 0x16]1);
assert_eq! (person_name_id, Person { name: "Evan", id: 22, phone: vec![] });

}

#[test]
fn test_phone() {
let phone: Person = parse_message(&[
0xQa, 0x00, 0x10, Ox00, Oxla, Ox16, @xQa, 0xQe, Ox2b, Ox31, @Ox32, 0x33,
0x34, 0x2d, ©x37, Ox37, Ox37, 0x2d, ©0x39, 0x30, ©0x39, 0x30, 0x12, 0x04,
0x68, Ox6f, Ox6d, OX65,
1),
assert_eq! (
phone,
Person {
name: "",
id: 0,
phone: vec![PhoneNumber { number: "+1234-777-9090", type_: "home" },1,

)
}

// Put that all together into a single parse.
#[test]
fn test_full_person() {
let person: Person = parse_message(&[
0x0a, 0x07, Ox6d, Ox61, Ox78, 0x77, @x65, O0x6C, Oxb6bC, Ox10, Ox2a, 0Oxla,
0x16, @x0a, 0x0e, 0x2b, 0x31, @x32, 0x30, 0x32, ©0x2d, 0x35, ©0x35, 0x35,
0x2d, ©x31, ©0x32, 0x31, 0x32, 0x12, 0x04, Ox68, Ox6f, 0x6d, 0x65, 0xla,
0x18, Ox@a, 0x0e, 0x2b, 0x31, Ox38, 0x30, 0x30, ©0x2d, 0x38, 0x36, 0x37,
0x2d, ©0x35, @Ox33, Ox30, 0x38, 0x12, 0x06, 0x6d, Ox6f, @Ox62, Ox69, Ox6C,
0x65,
1)
assert_eq! (
person,
Person {
name: "maxwell",
id: 42,
phone: vec!][
PhoneNumber { number: "+1202-555-1212", type_: "home" },
PhoneNumber { number: "+1800-867-5308", type_: "mobile" },

166

Part VII

Day 4: Morning

167

Chapter 25

Welcome to Day 4

Today we will cover topics relating to building large-scale software in Rust:

Iterators: a deep dive on the Iterator trait.

Modules and visibility.

Testing.

Error handling: panics, Result, and the try operator ?.

Unsafe Rust: the escape hatch when you can't express yourself in safe Rust.

Schedule

Including 10 minute breaks, this session should take about 2 hours and 50 minutes. It contains:

Segment Duration

Welcome 3 minutes

Iterators 55 minutes
Modules 45 minutes
Testing 45 minutes

168

Chapter 26

Iterators

This segment should take about 55 minutes. It contains:

Slide Duration

Motivation 3 minutes
Iterator Trait 5 minutes
Iterator Helper Methods 5 minutes
collect 5 minutes
Intolterator 5 minutes

Exercise: Iterator Method Chaining 30 minutes

26.1 Motivating Iterators

If you want to iterate over the contents of an array, you'll need to define:

» Some state to keep track of where you are in the iteration process, e.g. an index.
* A condition to determine when iteration is done.

* Logic for updating the state of iteration each loop.

* Logic for fetching each element using that iteration state.

In a C-style for loop you declare these things directly:

for (int i = 0; i < array_len; i += 1) {
int elem = array[i];

}

In Rust we bundle this state and logic together into an object known as an ”iterator”.
This slide should take about 3 minutes.

» This slide provides context for what Rust iterators do under the hood. We use the
(hopefully) familiar construct of a C-style for loop to show how iteration requires some
state and some logic, that way on the next slide we can show how an iterator bundles
these together.

* Rust doesn't have a C-style for loop, but we can express the same thing with while:

169

let array = [2, 4, 6, 8];

let mut i = 0;

while i < array.len() {
let elem = array[i];
i+=1;

More to Explore

There's another way to express array iteration using for in C and C++: You can use a pointer to
the front and a pointer to the end of the array and then compare those pointers to determine
when the loop should end.

for (int *ptr = array; ptr < array + len; ptr += 1) {
int elem = *ptr;
}

If students ask, you can point out that this is how Rust's slice and array iterators work under
the hood (though implemented as a Rust iterator).

26.2 Iterator Trait

The Iterator trait defines how an object can be used to produce a sequence of values. For
example, if we wanted to create an iterator that can produce the elements of a slice it might
look something like this:

struct Slicelter<'s> {
slice: &'s [132],
i: usize,

}

impl<'s> Iterator for Slicelter<'s> {
type Item = &'s 1i32;

fn next(&mut self) -> Option<Self::Item> {
if self.i == self.slice.len() {
None
} else {
let next = &self.slice[self.i];
self.i += 1;
Some (next)

}

fn main() {
let slice = &[2, 4, 6, 8]1;
let iter = Slicelter { slice, i: 0 };
for elem in iter {
dbg! (elem);

170

https://doc.rust-lang.org/std/iter/trait.Iterator.html

}
This slide should take about 5 minutes.

* The SliceIter exampleimplementsthe same logic asthe C-style forloop demonstrated
on the last slide.

* Point out to the students that iterators are lazy: Creating the iterator just initializes the
struct but does not otherwise do any work. No work happens until the next method is
called.

* Iterators don't need to be finite! It's entirely valid to have an iterator that will produce
values forever. For example, a half open range like 0. . will keep going until integer
overflow occurs.

More to Explore

* The ”real” version of S1licelIteristhe slice::Iter type in the standard library, how-
ever the real version uses pointers under the hood instead of an index in order to
eliminate bounds checks.

* The SliceIter example is a good example of a struct that contains a reference and
therefore uses lifetime annotations.

* You can also demonstrate adding a generic parameter to SliceIter to allow it to work
with any kind of slice (not just &[132]).

26.3 Iterator Helper Methods

In addition to the next method that defines how an iterator behaves, the Iterator trait
provides 70+ helper methods that can be used to build customized iterators.

fn main() {
let result: i32 = (1..=10)
filter(|x| x % 2 == 0)
.map(|[x| x * x)
.sum();

println!("The sum of squares of even numbers from 1 to 10 is: {}", result);

}
This slide should take about 5 minutes.

* The Iterator trait implements many common functional programming operations
over collections (e.g. map, filter, reduce, etc). This is the trait where you can find all
the documentation about them.

* Many of these helper methods take the original iterator and produce a new iterator
with different behavior. These are know as ”iterator adapter methods”.

» Some methods, like sum and count, consume the iterator and pull all of the elements
out of it.

* These methods are designed to be chained together so that it's easy to build a custom
iterator that does exactly what you need.

171

https://doc.rust-lang.org/stable/std/slice/struct.Iter.html

More to Explore

* Rust's iterators are extremely efficient and highly optimizable. Even complex itera-
tors made by combining many adapter methods will still result in code as efficient as
equivalent imperative implementations.

26.4 collect

The collect method lets you build a collection from an Iterator.

fn main() {
let primes = vec![2, 3, 5, 7];
let prime_squares = primes.into_iter().map(|p| p * p).collect::<Vec<_>>();
println!("prime_squares: {prime_squares:?}");

}
This slide should take about 5 minutes.

* Any iterator can be collected in to a Vec, VecDeque, or HashSet. Iterators that pro-
duce key-value pairs (i.e. a two-element tuple) can also be collected into HashMap and
BTreeMap.

Show the students the definition for collect in the standard library docs. There are two
ways to specify the generic type B for this method:

» With the "turbofish”: some_iterator.collect: :<COLLECTION_TYPE>(), as shown.
The _ shorthand used here lets Rust infer the type of the Vec elements.

* With type inference: let prime_squares: Vec<_> = some_iterator.collect().
Rewrite the example to use this form.

More to Explore

* If students are curious about how this works, you can bring up the FromIterator trait,
which defines how each type of collection gets built from an iterator.

* In addition to the basic implementations of FromIterator for Vec, HashMap, etc., there
are also more specialized implementations which let you do cool things like convert an
Iterator<Item = Result<V, E>>intoaResult<Vec<V>, E>.

» The reason type annotations are often needed with collect is because it's generic over
its return type. This makes it harder for the compiler to infer the correct type in a lot of
cases.

26.5 IntoIterator

The Iterator trait tells you how to iterate once you have created an iterator. The related
trait IntoIterator defines how to create an iterator for a type. It is used automatically by
the for loop.

struct Grid {
X_coords: Vec<u32>,
y_coords: Vec<u32>,

172

https://doc.rust-lang.org/std/iter/trait.Iterator.html#method.collect
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.FromIterator.html
https://doc.rust-lang.org/std/iter/trait.IntoIterator.html

impl IntoIterator for Grid {
type Item = (u32, u32);
type IntoIter = GridIter;
fn into_iter(self) -> GridIter ({
GridIter { grid: self, i: @, j: 0 }

}

}

struct GridIter {
grid: Grid,
i: usize,
j: usize,

}

impl Iterator for GridIter ({
type Item = (u32, u32),

fn next(&mut self) -> Option<(u32, u32)> {
if self.i >= self.grid.x_cooxrds.len() {
self.i = 0;
self.j += 1;
if self.j >= self.grid.y_coords.len() {
return None;

}
}
let res = Some((self.grid.x_coords[self.i], self.grid.y_coords[self.j]));
self.i += 1;
res

}

fn main() {
let grid = Grid { x_coords: vec![3, 5, 7, 9], y_coords: vec![10, 20, 30, 40] },;
for (x, y) in grid {
println! ("point = {x}, {y}");
}
}

This slide should take about 5 minutes.

* IntoIterator is the trait that makes for loops work. It is implemented by collection
types such as Vec<T> and references to them such as &/ec<T> and &[T]. Ranges also
implement it. This is why you can iterate over a vector with for i in some_vec {

1 but some_vec.next () doesn't exist.

Click through to the docs for IntoIterator. Every implementation of IntoIterator must
declare two types:

* Item: the type to iterate over, such as 18,
* IntoIter: the Iterator type returned by the into_iter method

Note that IntoIter and Item are linked: the iterator must have the same Item type, which
means that it returns Option<Item>

173

The example iterates over all combinations of x and y coordinates.

Tryiterating over the grid twice inmain. Why does this fail? Note that IntoIterator: :into_iter
takes ownership of self.

Fix this issue by implementing IntoIterator for &Grid and creating a GridRefIter that
iterates by reference. A version with both GridIter and GridRefIter is available in this
playground.

The same problem can occur for standard library types: for e in some_vector will take
ownership of some_vector and iterate over owned elements from that vector. Use for e
in &some_vector instead, to iterate over references to elements of some_vector.

26.6 Exercise: Iterator Method Chaining

In this exercise, you will need to find and use some of the provided methods in the Iterator
trait to implement a complex calculation.

Copy the following code to https://play.rust-lang.org/ and make the tests pass. Use an iterator
expression and collect the result to construct the return value.

/// Calculate the differences between elements of “values offset by ‘offset’,
/// wrapping around from the end of ‘values to the beginning.
/17
/// Element “n° of the result is ‘values[(n+offset)%len] - values[n]’.
fn offset_differences(offset: usize, values: Vec<i32>) -> Vec<i32> {
todo! ()
}

#[test]

fn test_offset_one() {
assert_eq! (offset_differences(1l, vec![1l, 3, 5, 71), vec![2, 2, 2, -6]1);
assert_eq! (offset_differences(1l, vec![1, 3, 5]1), vec![2, 2, -4]);
assert_eq! (offset_differences(1, vec![1, 3]), vec![2, -21);

}

#[test]
fn test_larger_offsets() {

assert_eq! (offset_differences(2, vec![1, 3, 5, 71), vec![4, 4, -4, -4]1);
assert_eq! (offset_differences(3, vec![1, 3, 5, 71), vec![6, -2, -2, -21);
assert_eq! (offset_differences(4, vec![1, 3, 5, 71), vec![0, @, @0, 01);
assert_eq! (offset_differences(5, vec![1, 3, 5, 71), vec![2, 2, 2, -6]1);

}

#[test]

fn test_degenerate_cases() {
assert_eq! (offset_differences(1l, vec![0]), vec![0]);
assert_eq! (offset_differences(1l, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq! (offset_differences(1l, empty), vec![]);

174

https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=947e371c7295af758504f01f149023a1
https://play.rust-lang.org/?version=stable&mode=debug&edition=2024&gist=947e371c7295af758504f01f149023a1
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://play.rust-lang.org/

26.6.1 Solution

/// Calculate the differences between elements of ‘values' offset by ‘offset’,
/// wrapping around from the end of “values®™ to the beginning.
/17
/// Element 'n° of the result is “values[(n+offset)%len] - values[n] .
fn offset_differences(offset: usize, values: Vec<i32>) -> Vec<i32> {
let a = values.iter();
let b = values.iter().cycle().skip(offset);
a.zip(b).map(|(a, b)| *b - *a).collect()
}

#[test]

fn test_offset_one() {
assert_eq! (offset_differences(1l, vec![1l, 3, 5, 71), vec![2, 2, 2, -6]1);
assert_eq! (offset_differences(1, vec![1, 3, 51), vec![2, 2, -4]);
assert_eq! (offset_differences(1, vec![1, 3]), vec![2, -21);

}

#[test]
fn test_larger_offsets() {

assert_eq!?offset_differences(z, vec![1, 3, 5, 71), vec![4, 4, -4, -4]1);
assert_eq! (offset_differences(3, vec![1, 3, 5, 71), vec![6, -2, -2, -2]);
assert_eq! (offset_differences(4, vec![1, 3, 5, 71), vec![0, 0, 0, 0]);
assert_eq! (offset_differences(5, vec![1, 3, 5, 71), vec![2, 2, 2, -6]1);

}

#[test]

fn test_degenerate_cases() {
assert_eq! (offset_differences(1l, vec![0]), vec![0]);
assert_eq! (offset_differences(1l, vec![1]), vec![0]);
let empty: Vec<i32> = vec![];
assert_eq! (offset_differences(1l, empty), vec![]);

175

Chapter 27

Modules

This segment should take about 45 minutes. It contains:

Slide Duration
Modules 3 minutes
Filesystem Hierarchy 5 minutes
Visibility 5 minutes
Encapsulation 5 minutes
use, super, self 10 minutes

Exercise: Modules for a GUI Library 15 minutes

27.1 Modules

We have seen how imp1 blocks let us namespace functions to a type.
Similarly, mod lets us namespace types and functions:

mod foo {
pub fn do_something() {
println!("In the foo module");

}
}
mod bar {
pub fn do_something() {
println!("In the bar module");
}
}

fn main() {
foo: :do_something();
bar::do_something();
}

This slide should take about 3 minutes.

176

» Packages provide functionality and include a Cargo. toml file that describes how to
build a bundle of 1+ crates.

* Crates are a tree of modules, where a binary crate creates an executable and a library
crate compiles to a library.

* Modules define organization, scope, and are the focus of this section.

27.2 Filesystem Hierarchy

Omitting the module content will tell Rust to look for it in another file:
mod garden;

This tells Rust that the garden module content is found at src/garden.rs. Similarly, a
garden: :vegetables module can be found at src/garden/vegetables.rs.

The crate rootis in:

* src/lib.xs (for a library crate)
* src/main.rs (for a binary crate)

Modules defined in files can be documented, too, using ”inner doc comments”. These docu-
ment the item that contains them -- in this case, a module.

//1 This module implements the garden, including a highly performant germination
//! implementation.

// Re-export types from this module.
pub use garden::Garden;
pub use seeds::SeedPacket;

/// Sow the given seed packets.
pub fn sow(seeds: Vec<SeedPacket>) {
todo! ()

}

/// Harvest the produce in the garden that is ready.
pub fn harvest(garden: &mut Garden) ({

todo! ()
}

This slide should take about 5 minutes.

» Before Rust 2018, modules needed to be located at module/mod.rs instead of
module.rs, and this is still a working alternative for editions after 2018.

* The main reason to introduce filename. rs as alternative to filename/mod.xs was
because many files named mod . rs can be hard to distinguish in IDEs.

* Deeper nesting can use folders, even if the main module is a file:

src/

— main.rs

— top_module.rs
L— +top_module/
L— sub_module.rs

177

* The place rust will look for modules can be changed with a compiler directive:

#[path = "some/path.rs"]
mod some_module;

This is useful, for example, if you would like to place tests for a module in a file named
some_module_test. rs, similar to the convention in Go.

27.3 Visibility

Modules are a privacy boundary:

* Module items are private by default (hides implementation details).
» Parent and sibling items are always visible.
» In other words, if an item is visible in module foo, it's visible in all the descendants of

foo.

mod outer {
fn private() {
println!("outer::private");

}

pub fn public() {
println!("outer::public");
}

mod inner {
fn private() {
println!("outer::inner::private");

}

pub fn public() {
println!("outer::innex::public");
super: :private();

}

fn main() {
outer: :public();

}

This slide should take about 5 minutes.
* Use the pub keyword to make modules public.
Additionally, there are advanced pub(. . .) specifiers to restrict the scope of public visibility.

* See the Rust Reference.

 Configuring pub(crate) visibility is a common pattern.

* Less commonly, you can give visibility to a specific path.

* In any case, visibility must be granted to an ancestor module (and all of its descendants).

178

https://doc.rust-lang.org/reference/visibility-and-privacy.html#pubin-path-pubcrate-pubsuper-and-pubself

27.4 Visibility and Encapsulation

Like with items in a module, struct fields are also private by default. Private fields are likewise
visible within the rest of the module (including child modules). This allows us to encapsulate
implementation details of struct, controlling what data and functionality is visible externally.

use outer: :Foo;

mod outer {
pub struct Foo {

pub val: i32,
is_big: bool,
}
impl Foo {
pub fn new(val: i32) -> Self {
Self { val, is_big: val > 100 }
}
}

pub mod innexr {
use super: :Foo;

pub fn print_foo(foo: &Foo) {
println!("Is {} big? {}", foo.val, foo.is_big);
}

}

fn main() {
let foo = Foo::new(42);
println!("foo.val = {}", foo.val);
// let foo = Foo { val: 42, is_big: true };

outer::inner: :print_foo(&foo);
// println!("Is {} big? {}", foo.val, foo.is_big);
}

This slide should take about 5 minutes.

* This slide demonstrates how privacy in structs is module-based. Students coming from
object-oriented languages may be used to types being the encapsulation boundary, so
this demonstrates how Rust behaves differently while showing how we can still achieve
encapsulation.

* Note how the is_big field is fully controlled by Foo, allowing Foo to control how it's
initialized and enforce any invariants it needs to (e.g. that is_bigis only trueif val
> 100).

* Point out how helper functions can be defined in the same module (including child
modules) in order to get access to the type's private fields/methods.

* The first commented out line demonstrates that you cannot initialize a struct with
private fields. The second one demonstrates that you also can't directly access private

179

fields.

* Enums do not support privacy: Variants and data within those variants is always public.

More to Explore

 If students want more information about privacy (or lack thereof) in enums, you can
bring up #[doc_hidden] and #[non_exhaustive] and show how they're used to limit
what can be done with an enum.

* Module privacy still applies when there are imp1 blocks in other modules (example in
the playground).

27.5 use, super, self
A module can bring symbols from another module into scope with use. You will typically see
something like this at the top of each module:

use std::collections: :HashSet;
use std::process: :abort;

Paths

Paths are resolved as follows:
1. As arelative path:

* fooor self::foo refersto foo in the current module,
* super: : foo refers to foo in the parent module.

2. As an absolute path:

* crate: :foo refers to foo in the root of the current crate,
* bar: :foo refers to foo in the bar crate.

This slide should take about 8 minutes.

* Itis common to ”re-export” symbols at a shorter path. For example, the top-level 1ib.rs
in a crate might have

mod storage;
pub use storage::disk::DiskStorage;
pub use storage::network::NetworkStorage;

making DiskStorage and NetworkStorage available to other crates with a convenient,
short path.

» For the most part, only items that appear in a module need to be use'd. However, a trait
must be in scope to call any methods on that trait, even if a ty